دوستان به جای 09357795285 شماره جدید 09217354724 رو بگیرید

دوستان به جای 09357795285 شماره جدید 09217354724 رو بگیرید

مقاله دانشجویی

طراحی سایت


مقاله دانشجویی
 
تحقیق پروزه ومفالات دانشجویی
Yahoo Status by RoozGozar.com

نوشته شده در تاريخ دو شنبه 27 آذر 1391برچسب:, توسط aryan

 

تعیین جرم مولکولی اسید آلی مجهول

 

 

مقدمه

قبل از تلاش برای تعیین ساختمان یک ماده آلی مجهول از طریق طیف گیری ، می‌توان مشکل را با تعیین فرمول مولکولی ماده قدری ساده‌تر کرد. در این مقاله این موضوع را بررسی می‌کنیم چگونه فرمول مولکولی یک ترکیب ، تعیین گردیده و چطور می‌توان از آن فرمول ، اطلاعاتی برای ساختمان ماده بدست آورد.

تجزیه عنصری و طرز محاسبات

روش قدیمی تعیین فرمول مولکولی یک ماده مستلزم سه مرحله است. اولین مرحله ، انجام آنالیز (تجزیه کیفی عنصری برای یافتن نوع اتمهای موجود در مولکول است. مرحله دوم ، انجام آنالیز کمی عنصری برای یافتن تعداد نسبی انواع مختلف اتمها در مولکول است. این عمل منجر به یافتن فرمول تجربی می‌گردد. مرحله سوم ، شامل تعیین جرم مولکولی یا تعیین وزن مولکولی است که وقتی آن را با فرمول تجربی در هم آمیزیم، تعداد واقعی اتمهای موجود در مولکول را نشان خواهد داد و نتیجه حاصل ، فرمول مولکولی خواهد بود.

تعیین فرمول تجربی

تقریبا تمام مواد آلی ، دارای کربن و هیدروژن هستند. در اکثر حالتها ، تعیین این که آیا این عناصر موجودند یا خیر ، واجب و لازم نیست. ولی اگر ضرورت ایجاب کند که وجود آن دو را به اثبات رسانیم، می‌توان ماده مجهول را در حضور اکسیژن سوزاند. اگر احتراق ماده ، انیدریک ایجاد کند، پس در ماده مجهول کربن موجود بوده است و اگر آب ایجاد شد، می‌بایست اتمهای هیدروژن در ماده وجود داشته باشند.

یادآوری این نکته ضروری است که هیچ روش مستقیم مناسبی برای تعیین وجود اکسیژن در یک ماده وجود ندارد، به این دلیل است که در آنالیز کیفی از اکسیژن نامی برده نمی‌شود. نیتروژن ، کلر ، برم ، ید و گوگرد را می‌توان به آزمایشی مشابه آزمون ذوب سدیم شناسایی کرد.

برای تعیین دقیق کربن و هیدروژن موجود در یک ماده مجهول ، به یک آنالیز کمی نیاز است. در عملیات آزمایشگاهی تجاری مکررا این تجزیه را انجام می‌دهند. روش تعیین مقادیر کربن و هیدروژن در یک ماده ، مبتنی بر احتراق آن برای تولید انیدریک کربنیک و آب است. در تجزیه کمی ، انیدریک کربنیک و آب را جمع‌آوری کرده و سپس وزن می‌کنیم. روش‌هایی نیز برای تعیین مقادیر گوگرد ، نیتروژن و هالوژنهای موجود در ترکیب در دسترس هستند.

تعیین جرم مولکولی

یک مرحله در تعیین فرمول مولکولی یک ماده ، تعیین وزن یک مول از آن ماده است. این عمل به طرق مختلفی صورت می‌گیرد. بدون در دست داشتن جرم مولکولی یک مجهول ، کسی قادر نیست بگوید فرمول تجربی که مستقیم از تجزیه عنصری تعیین گشته ، آیا فرمول حقیقی ماده بوده یا این که این فرمول باید در عددی ضرب شود تا فرمول مولکولی واقعی جسم مجهول مشخص گردد.

استفاده از طیف سنج جرمی

در یک آزمایشگاه جدید ، جرم مولکولی با استفاده از طیف سنج جرمی تعیین می‌گردد. یک روش قدیمی جهت تعیین جرم مولکولی ماده ( بر اساس اصول شیمی عمومی ) ، روش چگالی بخار است. در این روش ، حجم مشخصی از گاز در دمای مشخص توزین می‌گردد. پس از تبدیل حجم گاز در دما و فشار استاندارد ، می‌توان تعیین نمود که آن حجم چه کسری از یک مول را نشان می‌دهد. از این طریق می‌توان جرم مولکولی ماده را بسادگی تعیین کرد.

اندازه‌گیری نزول نقطه انجماد یک حلال

روش دیگر تعیین جرم مولکولی یک ماده ، اندازه‌گیری نزول نقطه انجماد یک حلال است که به مقدار مشخصی از ماده مورد آزمایش اضافه شده باشد. این روش به نام روش انجماد سنجی خوانده می‌شود.

اسمومتری فشار بخار

روش دیگر که فقط گاهی اوقات مورد استفاده قرار می‌گیرد، اسمومتری فشار بخار است. در این روش ، ماده مورد آزمایش را در یک حلال حل کرده و تغییر فشار بخار حلال را اندازه می‌گیرند.

 

تیتراسیون

اگر ماده مجهول یک اسید کربوکسیلیک باشد، می‌توان آن را با محلول استاندارد هیدروکسید تیتر کرد. با بهره گیری از این روش می‌توان اکی‌والان خنثی را تعیین نمود. اکی‌والان خنثی معادل وزن اکی‌والان آن اسید است. اگر آن اسید فقط حاوی یک گروه کربوکسیل باشد، در آن صورت اکی‌والان خنثی و جرم مولکولی معادل خواهند بود. اگر آن اسید دارای بیش از یک گروه کربوکسیل باشد، آنگاه اکی‌والان خنثی برابر جرم مولکولی اسید تقسیم بر تعداد گروههای کربوکسیل خواهد بود. بسیاری از فنلها (بویژه آنهایی که توسط گروههای الکترون کشنده استخلاف شده‌اند) آنقدر اسیدی‌اند که می‌توان آنها را با روشی مشابه اسیدهای کربوکسیلیک تیتر کرد. این روش را می‌توان برای اسیدهای سولفونیک نیز بکار برد.

فرمول مولکولی

هنگامی که جرم مولکولی و فرمول تجربی تعیین گردیدند، می‌توان مستقیما فرمولی مولکولی جسم را تعیین کرد. اغلب ، وزن فرمول تجربی و جرم مولکولی یکسان است. در چنین حالتی ، فرمول تجربی ، همان فرمول مولکولی است. در بسیاری از حالتها وزن فرمول تجربی کمتر از جرم مولکولی است. در چنینی حالتهایی ضروری است که تعیین گردد چند بار وزن مولکولی را باید به وزن فرمول تجربی تقسیم کرد و سپس رقم بدست آمده را در فرمو ل تجربی ضرب کرد تا فرمول مولکولی بدست آید.

مثال ساده در این مورد ، اتان است. بعد از تجزیه کمی عنصری ، فرمول تجربی CH3 برای اتان تعیین گردید. محاسبات نشان داد که جرم مولکولی اتان ۳۰ است. پس از تقسیم وزن مولکولی اتان (۳۰) بر وزن فرمول تجربی (۱۵) رقم ۲ بدست آمد. بنابراین ، باید فرمول مولکولی اتان ، ۲(CH3) یا C2H6 باشد.

برای مثال ، مجهولی که پیشتر در این فصل معرفی گشت، فرمول تجربی C7H14O2 بوده و وزن فرمولی آن ۱۳۰ است. اگر فرض کنیم که جرم مولکولی این ماده ۱۳۰ تعیین شده است، می‌توان نتیجه گرفت فرمول تجربی و فرمول مولکولی معادلند و ضمنا فرمول مولکولی باید C7H14O2 باشد.

روش کار : ۰٫۰۲g  اسید مجهول وزنی را وزن می کنیم و بعد آن را در ۱۰cc  الکل سفید حل می کنیم و بعد به آن ۴۰cc  آب مقطر می افزاییم و در قسمت آخر به آن ، به مقدار ۲ قطره شناساگر فنل فتالئین می افزاییم فنل فتالئین در محیط اسیدی بی رنگ است و در محیط بازی به بنفش است .

بعد از تهیه آن محلول به مرحله تهیه ی ۱۰۰cc  محلول NaOH 0.1M تهیه می کنیم و در داخل بورت می ریزیم و مرحله ی بعدی مرحله ی انجام تیتراسیون است که آن را نیز انجام می دهیم و به محض اینکه رنگ محلول به رنگ بنفش می رسد شیر بورت را می بندیم و بعد جرم مولکولی اسید مجهول را  به دست می آوریم

 


نوشته شده در تاريخ دو شنبه 27 آذر 1391برچسب:, توسط aryan

 

استری شدن “تهیه اتیل استات”

 

 

مقدمه و تئوری :

استری کردن نمونه ای از یک واکنش تراکمی است که با حذف درون مولکولی و یا بین مولکولی یک مولکول کوچک تقطیر H2O  از واکنش گرما همراه است در طی این واکنش استر از اجزای سازنده خود یعنی اسید و الکل یا استوکیومتری زیر به وجود می آید :

R COOH + HOR/ + H2O

 استر ها معمولا از واکنش الکل ها و یا فنل ها با اسید های کربوکسیلیک و یا مشتقات آنه تهیه می گردند .

حضور گروههای حجیم در نزدیکی محل انجام واکنش خواه در اسید ها یا الکل استری شدن را آهسته می سازد . در زیر فعالیت الکلها و اسید ها  را در استری شدن مشاهده می نمایید این مطلب در آبکافت استرها نیز صدق می نماید .

الکل ها           CH3OCH > 10 > 20 > 30

HCOOH > CH3COOH > RCH2COOH > R2OH COOH > R3CCOOH

چون این فرایند برگشت پذیر است حذف فراورده های جانبی (آب ) به تولید محصول بیشتر و کامل شدن واکنش کمک می کند . در استری کردن به روش فیشری از گاز HCL  به عنوان کاتالیزگر استفاده می شود . اما استری شدن اسیدهای کلرید آروماتیک ArCOCl  معمولاً در حضور باز انجام می گیرد .

در هیروکسی اسید ها که دارای هم عامل ایدی و هم عامل الکلی هستند اگر یک حلقه پنج یا شش ضلعی تشکیل شود استری شدن درون مولکولی اتفاق می افتد . بنابراین یک گاما و یا آلفا هیدروکسی اسید خود به خود آب از دست می دهد و یک استخر حلقوی را (ن کتون ) تولید می کند

 شرح کار :

ابتدا یک بالن ۱۰۰ سی سی را برداشته و مقدار cc15 اتانول مطلق ، cc30 استیک اسید و cc1 اسید سولفوریک غلیظ و چند عدد سنگ جوش را باهم مخلوط کرده و به مدت نیم ساعت رفلاکس می کنیم . بعد از سرد شدن به محتویات بالن cc5 آب نمک اشباع اضافه می کنیم و درون قیف جدا کننده  جداسازی دو              انجام می دهیم . فلز روی حاوی اتیل استات ( استر ) خواهد بود .

 


نوشته شده در تاريخ دو شنبه 27 آذر 1391برچسب:, توسط aryan

 

تهیه صابون

 

 

به نمک  اسید های چرب صابون گفته می شود.صابون ها ر از چربیها (چربی های حیوانی یا روغن های گیاهی یعنی دانه ها و میوه های گیاهی مانند بادام .نارگیل و خرما و…) تهیه می کنند.چربیها یک نوع استر می باشند و وقتی آنها را در حضور سود یا پتاس هیدرولیز می کند به اکل (گلیسرول)و نمک اسید مربوطه (صابون) هیدرولیز می شوند.به این عمل صابونی شدن گفته می شود در صابون ها گروه R شامل بیش از ۱۰ کربن است.

در صنعت دنبه مذاب (چربی گاو یا گوسفند) را با مقدار زیاد قلیا در یک ظرف بزرگ مخلوط کرده و آنرا حرارت می دهند و در این حال بخار آب بدان  وارد می کنند پس از کامل شدن هیدرولیز با افزایش سدیم کلراید صابون رسوب می نماید.گلیسیرین که محصول دیگر هیدرولیز است از محلول آبی بازیابی می شود.

معمولا نمک های سدیم اسید های چرب اشباع شده یا اشباع نشده سفت تر از نمک های پتاسیم مربوطه می باشند و حلالیت آنها نیزدر آب کمتر است.صابون پتاسیم بعلت نرم بودنش بیشتر در خمیر ریش یا شامپو استفاده می گردد.نمک های کلسیم .منیزیم و آهن اسیدهای چرب غیر محلول بوده و این امر سبب عدم کاربرد آنها به عنوان یک صابون می گردد .همچنین آب سخت که محتوی مقدار قابل ملاحظه ای از یون های ۳ لز یاد شده است مانع پاک کنندگی صابون می شوند.

صابون با گلیسیرین به طور مخلوط تولید می شود.برای جدا کردن آنها به مخلوط آب نمک غلیظ اضافه می شود.صابون در آب نمک حل نمی شود و چون از آب سبکتر است روی مخلوط بصورت خمیر جمع می شود.در صنعت آن را جدا کرده و به آن اسانس و رنگ دلخواه افزوده و در قالبهایی ریخته و خشک می کنند.

واکنش صابونی شدن بر خلاف هیدرولیز تعادلی نیست و بخوبی در جهت تشکیل محصولات پیشرفت می کند.صابون معمولی سدیم استئارات است که از ترکیب چربی استئارین با سود تولید می شود.

صابون در وهله ی اول بخاطر توانایی اش در شیرگون کردن چربیها .روغن ها.گریسها و سایر مولکول های آلی می تواند آنها را از پارچه و یا وسایل آلوده بزداید .تعلیق قطرات کوچکی از روغن ذر آب را شیرگون یا امولسیون می گویند.اگر روغن و آب را با هم برای مدت کوتاهی به آهستگی تکان دهیم و صبر کنیم تا مدتی بی حرکت باقی بمانند می بینیم که دو لایه دوباره نمایان می شود.حال اگر قبل از تکان دادن یک قطعه کوچک صابون به مخلوط اضافه کنیم و آنگاه به هم بزنیم یک شیرگون پدیدار می شود و ذرات روغن به صورت قطرات کوچکی در آب پخش می شوند.این شیرگون بسیار پایدار بوده و تمایلی برای جدا شدن به دو لایه آب و روغن از خود نشان نمی دهد.

علت پاک کنندگی صابون

صابون نمک قلیاییاسید چرب سیر شده یا سیر نشده با زنجیر بلند است که دارای دو قسمت است .سمت قطبی آن با آب و قسمت زنجیری دهیدرو کربنی صابون با ذرات چرک و چربی پیوند می دهد بدین ترتیب لکه چربی از روی الیاف پارچه به آب کشیده می شود و شناور می ماند.

توانایی برجسته صابون به عنوان یک امولسیون کننده در این است که دارای دو قسمت می باشد یکی گروه R  که چربی دوست بوده و در آب نامحلول است (لیپوفیل) و دیگری گروه COO – که آب دوست بوده و کشنده آب به سوی خود می باشد (هیدروفیل) و توسط حلال های آلی دفع می شود.

تشکیل یک لایه از صابون بر روی آب باعث ایجاد سطحی میان فاز محلول آبی و فازهای دیگر مانند هوا یا یک ذره چربی می نماید و سبب کف کردن صابون می گردد.اگر روغن به صورت قطرات کوچکی در اثر تکان دادن در آب پخش شده باشد مولکولهای صابون خود را در اطراف قطره می آرایند و در محلول مجموعه ای موسوم به مایسل تشکیل می دهند چون سطح هر قطره دارای بار منفی است قطرات یکدیگر را دفع نموده و در نتیجه لایه های روغن بهم آمیخته نمی گردند و بدین ترتیب روغن در آب شیرگون می شود.هرگاه مقدار کمی صابون در آب حل شود انتهای کربوکسیلات آن که آب دوست است در آب حل شده ولی انتهای هیدروکربنی آن که آب گریز است در آب حل نمی شود.در نتیجه صابون به صورت یک لایه به ضخامت یک مولکول سطح آب را می پوشاند.به علت تشکیل این لایه کشش سطحی آب به مقدار قابل ملاحظه ای کاهش می یابد به همین سبب آب محتوی مقدار اندکی صابون با سرعت بیشتری لیوان را تر می کند تا آب خالص. این دوگانگی به انیون اسیدهای چرب خاصیت  Tension-Activity  یعنی موثر روی کشش سطحی مایعات می دهد.

شرح آزمایش

۱۲گرم روغن مایع را برداشته و درون یک بشر ۲۰۰میلی لیتری می ریزیم و سپس درون یک بالن ژوژه ۵گرم NaOH را در ۱۵ میلی لیتر آب به اضافه ۱۰ میلی لیتر اتانول حل می کنیم و به بشر محتوی روغن می افزائیم .

سپس در این لحظه بشر را درون یک حمام آب گرم به مدت زمان ۲۰ الی ۳۰ دقیقه می گذاریم تا روغن درون محلول اتانول و آب و هیدروکسید سدیم حل شود.

بعد از گذشت این مدت زمان بشر را از حمام آب گرم بیرون می آوریم و آن را مشاهده می کنیم تا ببینیم که آیا روغن درون محلول فوق حل شده است یا نه؟

در این هنگام که روغن درون حمام آب گرم است ، مقدار ۵۰ گرم Nacl را درون ۱۵۰ میلی لیتر آب حل می کنیم .

بعد از اینکه بشر حاوی روغن است را بیرون آوردیم محلول اشباع شده Nacl را به آن می افزائیم.

بعد از چند لحظه کوتاه که مقداری رسوب در محلول ظاهر شد محلول را توسط یک کاغذ صافی صاف می کنیم .

کاغذ صافی را در یک محیط قرار می دهیم تا رسوب درون آن خشک شود ، سپس حجم بدست آمده را اندازه گیری می کنیم و مقدار آن را گزارش می کنیم. مقدار بدست آمده رسوب صابون ۱۰٫۳۵ گرم می باشد.(بدون احتساب کاغذ صافی) 

 


نوشته شده در تاريخ دو شنبه 27 آذر 1391برچسب:, توسط aryan

 

تهیه سیکلوهگزانون

 

 

مقدمه:

اکسایش یک الکل به معنای حذف یک یا چند هیدروژن افزایش اکسیژن به سوبسترا و گزلتن که از کربن حاصل گروه  OH  می باشد.یک الکل نوع اول دارای ۲ هیدروژن α می باشد و می تواند یکی از آنها را از دست داده و به یک آلدئید تبدیل شود و یا هر دو هیدروژن را از دست داده و به یک کربوکسیلیک اسید تبدیل شود.

برای جلوگیری از تشکیل اسید کربوکسیلیک که محصول نامطلوب است کرومیک اسید را به الکل اضافه می کنند تا عامل اکسنده اضافی در مخلوط واکنش نباشد و آلدئید تشکیل شده را تقطیر می کنند.

یک الکل نوع ۲ می تواند تنها هیدروژن α خود را از دست داده و به یک کتون تبدیل شود.

یک الکل نوع ۳ فاقد هیدروژن α می باشد ولی یک عامل اکسید کننده ی اسیدی می تواند الکل را آبگیری نموده و به یک الکن تبدیل کرده و سپس آن را اکسید کند.

اکسایش الکلها بخش بزرگی را در سنتز ترکیات آلی تشکیل می دهند.از میان واکنش گرهایی که می توان برای اکسایش الکلها استفاده کرد می توان به ترکیبات Mn(VII) ,Cr(VI) اشاره نمود.اینها اکسنده های مناسبی هستند چون نمی توانند به آسانی کتون حاصل را اکسید کنند.

واکنش اکسایش سیکلوهگزانون به سیکلو هگزانول به صورت زیر است:

در این واکنش Cr(VI) به Cr(III) تبدیل می گردد که تغییر رنگ نارنجی به سبز تیره را به همراه دارد.

سرعت اکسایش الکلها با کرومیک اسید بسیار است و اگر اجسامی در محیط اسیدی قوی تجزیه شونده کرومیک ایندرید را در پیریدین حل می کنند یا KMNO4 بازی را به عنوان اکسنده به کار میبرند.

سیکلوهگزانون را میتوان از اکسایش سیکلوهگزانول توسط اسید کرومیک تهیه کرد. بدلیل اینکه کرومیک اسید نمی تواند به مدت طولانی پایدار بماند باید آنرا به مقدار لازم و تازه تهیه کرد. برای این کار از مخلوط سدیم بی کرومات یا پتاسیم بی کرومات و اسید سولفوریک استفاده می شود.

 

 

روش کار

۱۰ سی سی سولفوریک اسید غلیظ را به ۵۰ سی سی آب سرد در یک ارلن ۲۵۰ سی سی اضافه کنید. سپس ۱۰ گرم سیکلوهگزانول به آن اضافه کرده و کاملا به هم بزنید. در یک بشر کوچک محلولی از ۱۰٫۵ (ده و نیم) گرم سدیم دی کرومات دو آبه در ۲۰ سی سی آب تهیه کرده وآنرا به قیف جدا کننده منتقل کنید. دمای محلول اسید و الکل را در حدود ۳۰ درجه سانتیگراد تنظیم کرده و محلول دی کرومات را ضمن به هم زدن قطره قطره همراه به هم زدن شدید به آن اضافه کنید. واکنش گرمازا بوده و دمای مخلوط واکنش به سرعت زیاد خواهد شد. سرعت افزایش معرف را به گونه ای تنظیم کنید که دما از ۵۰ درجه سانتیگراد بالاتر نرود. در صورت افزایش بیش از حد دما، ارلن محتوی مخلوط واکنش را در حمام آب سرد بگذارید و دما را تا حدود ۵۰ درجه سانتیگراد پایین بیاورید. بعد از افزایش تمام دی کرومات، مخلوط واکنش را تا هنگامی به هم بزنید که دیگر افزایش دما مشاهده نشود. پس از آن محتوی ارلن را به مدت ۴۰ دقیقه ضمن به همزدن ملایم در دمای آزمایشگاه به حال خود بگذارید.

مخلوط واکنش را به یک بالن تقطیر ۲۵۰ سی سی منتقل کرده و حدود ۷۰ سی سی آب به آن اضافه کنید. مبرد را برای تقطیر ساده وصل کرده و با افزایش دو تکه سنگ جوش تقطیر مخلوط را تا به دست آوردن ۶۰ سی سی مایع تقطیر شده ادامه دهید.

 

 

 لایه آبی جمع آوری شده را با (نمک خوراکی) NaCl اشباع نموده (حدود ۱۰ گرم) و لایه آلی (بالایی) که سیکلوهگزانون میباشد را توسط قیف جداکننده جدا کنید. در صورت تمایل به راندمان گیری دقیق، فاز آبی را با کمی اتر و یا دی‌کلرو متان استخراج کرده و پس از تبخیر حلال، باقیمانده را به سیکلوهگزانون قبلی اضافه کنید. سیکلوهگزانون ناخالص حاصل را با کمی منیزیم سولفات انیدر (MgSO4) خشک کنید و سپس آنرا در یک بالن تقطیر کوچک ریخته و تقطیر کنید. مایع جمع آوری شده در محدوده دمایی ۱۵۵ – ۱۵۱ درجه سانتیگراد، سیکلوهگزانون خالص میباشد.

 


نوشته شده در تاريخ دو شنبه 27 آذر 1391برچسب:, توسط aryan

 

تهیه بنزوئیک اسید از تولوئن

 

 

تئوری:

شناسنامه

نام گذاری آیوپاک

Benzoic acid

جرم مولی

۱۲۲٫۱۲ گرم بر مول

نما(ظاهر)

جامد سفید

دمای ذوب

۱۲۲٫۴ درجه سانتی‌گراد

دمای جوش

۲۴۹٫۲ درجه سانتی‌گراد

چگالی

۱٫۲۶۵۹ گرم بر میلی لیتر (در ۱۵ درجهٔ سلسیوس)

فشار بخار

Not available

pH

۳٫۰ محلول یک درصد

حلالیت در آب

کم محلول در آب سرد

چگالی نسبی بخار

۴٫۲۱ (نسبت به هوا)

بنزوئیک اسید، (C7H6O2 (C6H5COOH، یک ترکیب بلوری بی رنگ (سفید دیده می‌شود) است. بنزوئیک اسید ساده‌ترین کربوکسیلیک اسید آروماتیک نیز می‌باشد. این ماده یک اسید ضعیف محسوب می‌شود. از نمک‌های آن به عنوان نگهدارنده‌های غذایی استفاده می‌شود، همچنین در ساخت بسیاری از ترکیبات آلی دیگر از بنزوئیک اسید استفاده می‌شود.

تاریخچه

بنزوئیک اسید در قرن شانزدهم میلادی کشف شد. اولین بار شخصی به نام Nostradamus از تقطیر خشک ماده‌ای سنتی به نام gum benzoin بدست آورد. در سال ۱۸۷۵ شخصی به نام Salkowski نیز پی به خواص ضد قارچ بنزوئیک اسید برد.

روشهای تهیه

روش تجاری

یکی از روشهای تجاری ساخت بنزوئیک اسید، اکسایش جزئی تولوئن با گاز [

[اکسیژن]] در مجاورت کاتالیزور کبالت یا منگنز نفتنا

ت است که با بازده

بالا و رعایت اصول محیط زیستی (شیمی سبز) انجام می‌شود که تصویر واکنش مربوطه را در زیر می‌بینید  

       

روش آزمایشگاهی

بنزوئیک اسید مادهٔ ارزان قیمت و در دسترسی است، در نتیجه در صورت نیاز به آن لازم نیست زحمت سنتز آن را متقبل شویم و فقط کافی است نمونهٔ تجاری آن را خریداری کرده و متناسب با کارمان آن را خالص سازی کنیم. که برای اینکار استفاده از روش تبلور مجدد با دو حلال با حلال‌های اتانول و آب بسیار مناسب می‌باشد. ولی در هر صورت می‌توان آن را به روش‌های

زیر نیز سنتز کرد:

با هیدرولیز

از هیدرولیز بنزونیتریل، بنزآمید در محیط‌های اسیدی و یا بازی شدید می‌توان بنزوئیک اسید یا آنیون آن را بدست آورد

از بنزالدهید

همچنین می‌توان با استفاده از واکنش کانیزارو ی تقاطعی بنزوئیک اسید را از بنزالدهید ساخت که واکنش مربوط به آن را در زیر می‌بینید:

از بنزیل الکل

همچنین می‌توان از اکسایش بنزیل الکل در حضور محلول پتاسیم پرمنگنات داغ نیز استفاده کرد. در این روش بلافاصله بعد از واکنش باید محلول در حالت داغ فیلتر شود تا منگنز دی اکسید تشکیل شده جدا شود و سپس محلول به حال خود رها می‌شود تا بلورهای بنزوئیک اسید تشکیل شود.

مصارف 

به عنوان خوراک واحدهای صنعتی

برای تهیهٔ بنزیل کلرید

بنزیل کلرید (C6H5COCl) از واکنش تیونیل کلرید (یا پنتاکلرید فسفر یا تری کلرید فسفر یا فسژن) با بنزوئیک اسید به دست می‌آید. با استفاده از بنزیل کلرید می‌توان بسیاری از مشتقات بنزوئیک اسید را ساخت از جمله بنزیل بنزوآت که یک طعم دهندهٔ مصنوعی می‌باشد.

برای تهیهٔ فنول

فنول (C6H5OH) از کربوکسیل زدایی همراه با اکسایش در دمای ۳۰۰oC الی ۴۰۰oC بدست می‌آید. البته این فرایند می‌تواند در حضور کاتالیزور نمک کبالتII در ۲۰۰oC هم انجام پذیرد. فنول (Phenol) نیز استفاده‌های بسیاری دارد، که مهمترین آنها تبدیل فنول به سیکلوهگزانول می‌باشد که سرآغازی برای تولید نایلون است.

وبرای ساخت بسیاری مواد دیگر

نگهدارندهٔ غذا

بنزوئیک اسید و نمک‌هایش به عنوان نگهدارندهٔ غذا مصرف دارند که به نام‌های E۲۱۲، E۲۱۱، E۲۱۰ و E۲۱۳ شناخته می‌شوند. هر کدام از این نمک‌ها از واکنش مستقیم یا واکنش با نمک‌های سدیم، پتاسیم یا کلسیم تهیه می‌شوند. در اصل بنزوئیک اسید از رشد قارچها، مخمرها و بعضی باکتریها جلوگیری می‌کند. نحوهٔ اثر بنزوئیک اسید اینگونه‌است که در ابتدا بنزوئیک اسید جذب سلول می‌شود، اگر pH درون سلولی به ۵ یا کمتر تغییر کند، تخمیر ناهوازی گلوکز از طریق Phosphofructokinase به میزان ۹۵٪ کاهش می‌یابد و این خود باعث نابودی آنها می‌شود. مقدار معمول استفاده از بنزوئیک اسید و نمک‌هایش به عنوان نگه دارنده بین ٪۰٫۰۵-٪۰٫۱ می‌باشد. البته در بعضی غذاها باید از سطوح بالاتری از بنزوئیک اسید استفاده شود که مقادیر ماکسیمم آن در قوانین بین المللی غذا موجود است. البته نگرانی‌هایی وجود دارد مبنی بر اینکه بنزوئیک اسید با آسکوربیک اسید (ویتامین C) موجود در نوشابه‌ها واکنش داده و مقادیر بسیار کم (ولی در دراز مدت خطرناک) بنزن تولید می‌شود.

دارو

اسید بنزوئیک جزئی از پماد Whitfield است که برای درمان بیماری‌های قارچی پوست و مو استفاده می‌شود.

خطرات بنزوئیک اسید

بنزوئیک اسید یک محرک پوست و چشم است. پس باید از تماس آن با پوست و چشم احتراز شود

شرح آزمایش

یک بالن ته گرد فاقد شاخه ی جانبی را برداشته ۳g پرمنگنات پتاسیم .۵۰cc  آب مقطر . ۲ml سود غلیظ و ۴cc  تولوئن را در آن ریخته چند گرم سنگ جوش به آن اضافه کرده به مدت ۶۰ دقیقه تقطیر برگشتی را انجام داده سپس محتوی را در یک بشر ریخته و با اسید سولفوریک اسیدی کرده و سپس به آن سولفیت سدیم جامد اضافه کرده تا رنگ محلول زایل گردد.روی بن ماری قرار داده تا حجم نصف شود سپس بشر را به کناری گذاشته تا سرد شود و اسیدبنزوئیک متبلور شود.سپس بوسیله ی قیف بوخنر و پمپ خلا صاف کرده و با آب مقطر کم حل کرده و مجددا کریستاله نموده آنگاه پس از خشک شدن مقدار آن را به دست آورید

 


نوشته شده در تاريخ دو شنبه 27 آذر 1391برچسب:, توسط aryan

 

تهیه سیکلوهگزانون اکسیم

 

 

مقدمه:

اکسیمها ترکیباتی هستند که دارای گروه عاملی زیرهستند و اتم کربن برای تکمیل هشت تایی خود به دو گروه دیگر نیز متصل می شود.

OH-N=C

یکی از مهمترین مشتقاتی که برای شناسایی آلدهیدها و کتون ها ساخته می شود مشتق اکسیم است.اکسیم ها از واکنش هیدروکسیل آمین هیدروکلراید با آلدئیدها و کتونها بدست می آید .کلیه کتون ها مخصوصا کتونهای حلقوی و مایع به سرعت به اکسیم تبدیل می شوند.اکسیم ها غالبا جامداند و برای شناسایی آلدئید و کتون ها بکار می روند.

 برخی از ترکیبات مرتبط با آمونیاک می توانند در محیط اسیدی به گروه کربونیل افزوده شوند و مشتقهایی تشکیل دهد که بیشتر برای مشخص کردن و شناسایی آلدهیدها و کتونها اهمیت دارند. فرآورده که همان اکسیم است ، دارای پیوند دوگانه ی کربن- نیتروژن است. ترکیبات اکسیم در پزشکی کاربرد دارند به عنوان مثال به عنوان پادزهر برای عوامل عصبیnerve agent مورد استفاده قرار می گیرند. nerve agent ، مولکولهای acetylcholinesterase را بوسیله ی فرآیند phosphonylation غیرفعال می کند. ترکیبات اکسیم می توانند مولکولهای acetylcholinesterase را دوباره فعال نمایند. اکسیم perillaldehyde به عنوان شیرین کننده ی ساختگی در زاپن مورد استفاده قرار می گیرد که ۲۰۰۰ مرتبه شیرین تر از ساکارز می باشد. سیکلوهگزانون را میتوان از اکسایش سیکلوهگزانول توسط اسید کرومیک تهیه کرد. بدلیل اینکه کرومیک اسید نمی تواند به مدت طولانی پایدار بماند باید آنرا به مقدار لازم و تازه تهیه کرد. برای این کار از مخلوط سدیم بی کرومات یا پتاسیم بی کرومات و اسید سولفوریک استفاده می شود.

 روش انجام ازمایش:

۲ گرم هیدروکسیل امین هیدرو کلرید را در ۲۰ میلی لیتر اب مقطر حل می کنیم .سپس به ان ۱۲ میلی لیتر هیدروکسید سدیم ۳ نرمال اضافه نمایید و پس از ان ۲ گرم سیکلو هگزانون به ان بیافزایید به محلول حاصل انقدر قطره قطره سود اضافه نمایید  تا محلول خنثی شود . محلول را با هم زن انقدر بهم میزنیم تا رسوب زیادی تشکیل شود و تمام نوکلیوفیل با سیکلو هگزانون واکنش دهد.

عوامل خطا:

هیدروکسیل امین مایع در مجاورت هوا اکسیده می شود به دلیل نا پایدار بودن این ترکیب از نمک هیدروکسیل امین هیدرو کلرید استفاده می شود برای ازاد کردن نوکلئوفیل از نمک به باز نیاز داریم تا محلول خنثی شود اما اگر محیط قلیایی شود گروه   به عنوان نوکلئوفیل رقابت می کند.اگر محیط   اسیدی باشد موجب پروتونه شدنه سیکلو هگزانون شده و این ترکیب تمایلی به واکنش با نوکلئوفیل ندارد.

 


نوشته شده در تاريخ دو شنبه 27 آذر 1391برچسب:, توسط aryan

 

تهیه بنزیلیک اسید

 

 

 

مقدمه:

بنزیلیک اسید (α_هیدروکسی دی فنیل استیک اسید )جامد سفید رنگی است با نقطه ذوب ۱۵۱ درجه سانتی گراد و جرم مولکولی ۲۲۸ می باشد.

هیدرولیز به معنای شکسته شدن توسط آب می باشد.در محیط اسیدی H2O و در محیط بازی OH به عنوان نوکلئوفیل با مولکول آلی وارد واکنش می گردد.

بنزیل در محیط قلیایی به بنزیلیک اسید تبدیل می گردد:

از هیدرولیز دی کتونها کربوکسیلیک اسیدها حاصل می شوند.اگر بنزیل را با یک باز قوی حرارت دهند به نمک α-هیدروکسی دی فنیل استات تبدیل می گردد.این نوآرایی درون مولکول با افزایش یون هیدروکسید به دی کتون شروع شده و با انتقال گروه آریل با الکترونهای پیوندش (نوآرایی کربانیون) به اتم کربن مجاور ادامه می یابد.همزمان با آن پروتون مولکول تغییر مکان داده و آنیون پایدار تشکیل می گردد.

شرح کار:

۵/۲ گرم هیدروکسید پتاسیم را در ۱۰ میلی لیتر آب در یک بالن حل کنید و سپس ۶ میلی لیتر اتانول و ۵/۲ گرم بنزیل به آن اضافه کنید و به همراه چند عدد سنگ جوش به مدت ۳۰-۲۰ دقیقه رفلاکس کنید سپس سیستم را خاموش کرده و محتوی بالن را در داخل یک بشر ۱۰۰ میلی لیتر ریخته اجازه دهید سرد شود و آن را در داخل حمام یخ بگذارید و به آرامی حدود ۱۰ میلی لیتر اسید کلریدریک غلیظ اضافه کنید تا محلول اسیدی شود (با کاغذ تورنسل امتحان کنید زیرا اگر اسید زیاد بریزید امکان دارد مولکول ها بشکند.) بلورهای اسید بنزیلیک به دست آمده را روی قیف بوخنر صاف کنید و آن را مقدار کمی آب مقطر کاملا سرد بشویید تا عاری از کلریدها گردد و بگذارید تا خشک شود رنگ محصول به دست آمده و وزن آن را گزارش نمایید


 


نوشته شده در تاريخ دو شنبه 27 آذر 1391برچسب:, توسط aryan

 

رنگ های آزو _ تهیه متیل اورانژ

 

 

ین گروه از رنگها شامل بزرگترین و مهمترین دسته رنگها بوده ، بطور وسیعی مورد استفاده قرار می‌گیرند. مشخص‌ترین ویژگی این رنگها داشتن یک یا چند گروه آزو N≡N- است که بین دو قسمت آلی رنگ به عنوان پل عمل می‌کنند و حداقل یکی از این گروه‌ها آروماتیک هستند. توسط گروه کرموفوری (رنگزای) آزو ، می‌توان طیف وسیعی از رنگها مثل زرد ، قرمز ، نارنجی ، آبی ، سبز ، بنفش و سیاه را سنتز کرد.

 

فرایند تهیه رنگهای آزو

روشهای مختلفی برای تهیه این نوع رنگها وجود دارد، ولی عموما آنها را از کوپلاسیون مواد دی‌آزونیوم تولید می‌کنند. این مواد از واکنش دی آزوتاسیون آمینهای آروماتیک نوع اول حاصل می‌شوند. واکنش دی‌آزوتاسیون در سال ۱۸۶۲ توسط “گریس” کشف شد و باعث تحول در صنایع رنگسازی گردید.

در این واکنش ، فنلها ، نفتلها و آریل آمینها به عنوان مواد کوپلاسیون بکار برده می‌شوند. در رنگهای حاصله گرده آزو بعنوان رنگزا و گروه‌های هیدروکسی یا آمینو به عنوان آکسوکروم ( تشدید کننده قدرت نفوذ رنگ ) شناخته می‌شوند.

 

طبقه بندی رنگهای آزو

این رنگها را برحسب تعداد گروه‌های آزو بصورت رنگهای مونو آزو ، دی آزو و پلی‌آزو طبقه‌بندی می‌کنند.

رنگهای منو آزو

این رنگها دارای یک گروه آزو بوده و از پر استفاده‌ترین گروه‌های آزو هستند. این رنگها به دو دسته تقسیم می‌شوند:

  • رنگهای فاقد گروه‌های کربوکسیلیک و سولنونیک : این گروه از رنگها با توجه به کاربردشان به شکل زیر دسته‌بندی می‌شوند:
  1. رنگهای حلال : مانند زرد آنیلین یا نارنجی سودان G که به عنوان حلال سایر رنگها بکار می‌روند.
  2. رنگهای بازی یا کاتیونی : از قدیمی‌ترین رنگهای سنتزی هستند و موارد استعمال فراوانی در رنگرزی الیاف طبیعی دارند، اما دارای ثبات کافی نیستند.
  3. رنگهای دندانه‌ای : این رنگها دارای گروه‌های هیدروکسی ارتو نسبت به گروه آزو هستند که تشکیل کمپلکس فلزی با نمکهای مختلف از جمله بی‌کرومات می‌دهند. از این گروه می‌توان مردانت قرمز ۲۸ و مردانت قهوه ای ۵۴ را نام برد.
  • رنگهای دارای گرده اسیدی : چهار رنگ معروف نارنجی (نارنجی ، نارنجی ، نارنجی ، (متیل اورانژ و نارنجی) جز این گروه هستند و از دی‌آزوتاسیون آمینهای حلقوی و سولفانیلیک اسید ، سنتز می‌شوند.

رنگهای دی‌آزو

  • رنگهایی که دو گروه آزو دارند : در ساختمان این رنگها ، ماده کوپلاسیون از دو طرف توسط دو گروه دی‌آزونیوم جفت می‌شوند. Z : ماده کوپلاسیون و A و ’A :ترکیبات دی آزونیومتعداد این رنگها محدود و اغلب غیر قابل حل در آب است که از لحاظ کاربردی جز رنگهای اسیدی دندانه‌ای و مستقیم محسوب می‌شوند. یکی از مهم‌ترین این رنگها ، اسید بلک است.
 

رنگهای تترا آزونیوم

در این رنگها ماده کوپلاسون با یک ترکیب تترا آزونیوم جفت می‌شود. از مهمترین این رنگها قرمز کنگو بوده که از جفت شدن بنزیدین با دو گروه نفیتونیک اسید تهیه می‌شود. این رنگها از فراوان‌ترین رنگهای دسیس آزو هستند و در بر گیرنده پیگمانها ، رنگهای مستقیم و همچنین تعدادی از رنگهای اسیدی و دندانه‌ای هستند. ماده D در ترکیب این رنگها معین کننده نوع رنگ اسیدی یا دندانه‌ای است. دی آمینها مانند بنزیدین نمونه‌ای از این ترکیب هستند.

قرمز کنگو به عنوان یکی از رنگهای این گروه جزو رنگهای مستقیم محسوب شده و برای رنگرزی الیاف پلی‌آمید ، پشم و سلولز

 بکار می‌رود. همچنین به علت نداشتن ثبات کافی بیشتر در تیتراسیون‌ها بعنوان معرف استفاده می‌شود.

رنگهای مستقیم

رنگهایی هستند که بدون افزودن نمک یا افزودنیهای دیگر مورد استفاده قرار می‌گیرند.

شرح آزمایش:

آزمایش در ۳ مرحله انجام میگیرد:

۱-در یک بشر ۲ گرم سدیم نیتریت را در حدود ۱۰ میلی لیتر آب مقطر حل می کنیم و در حمام آب یخ قرار می دهیم.

۲-در یک بشر دیگر ۳ گرم سولفانیلیک اسید را در حدود ۱۰ میلی لیتر سود دو نرمال حل نموده و محتویات بشر اول را به این بشر اضافه می کنیم.این بشر را در حمام آب و یخ قرار می دهیم و به آرامی و همراه با همزدن حدود ۲۵ میلی لیتر اسید کلریدریک چهار نرمال به آن اضافه می کنیم.دما را در حدود ۵ درجه سانتی گراد نگه می داریم.

۳-محلولی از انحلال ۴ گرم دی متیل آنیلین را در ۵۰ میلی لیتر سود دو نرمال تهیه کرده و به آهستگی و به دفعات به محتویات بشر قبلی می افزاییم.بلورهای قرمز متیل اورانژ حاصل می گردد.جهت جداسازی محصول محلول اشباع کلراید سدیم به آن افزوده و در حمام آب و یخ قرار می دهیم.سپس رسوب را صاف نموده و پس از خشک کردن توزین نموده و راندمان را تعیین می کنیم.

 


نوشته شده در تاريخ دو شنبه 27 آذر 1391برچسب:, توسط aryan

 

واکنش دیلز – آلدر

 

 

 

مقدمه:

واکنش دیلز –آلدر واکنشی است که در آن یک آلکن با یک دی ان مزدوج (۱و۳-دی ان) واکنش می دهد و مشتقی از سیکلو هگزن ایجاد می کند.به آلکن معمولا دی ان دوست یا دی انوفیل می گویند.واکنش اتیلن با بوتا دی ان منجر به تشکیل سیکلو هگزن می شود.

واکنش دیلز – آلدر یکی از مهمترین روش های سنتزی است که در دسترس شیمیدانان آلی است.چنانچه بجای آلکن از یک آلکین استفاده شود مشتقی از ۱ و ۴- سیکلوهگزا دی ان بدست می آید.

واکنش دیلز – آلدر روشی بسیار مناسب برای تشکیل پیوند کربن – کربن و ترکیبات حلقوی شش ضلعی می باشد.در این واکنش پیوندهای کربن –کربن دارای پیوند π در دی انوفیل ازیک طرف و کربنهای ۱ و ۴ – دی ان از طرف دیگر تشکیل می شود بنابراین روی هم رفته دی انوفیل به صورت ۱ و ۴ به دی ان افزایش می یابد.بنابراین پیوندهای دوگانه مزدوج علاوه بر واکنش های معمولی آلکنها مانند افزایش الکترون دوستی در واکنشی دیگر یعنی واکنش دیلز – آلدر نیز شرکت می کنند.این تبدیل که به حلقه افزایی دیلز –آلدر معروف است پیوندهای جدید همزمان و به صورت فضا ویژه تشکیل می شوند. با توجه به اینکه ایجاد کربنهای کایرال امری نه چندان آسان در سنتزهای آلی می باشند، توانایی این واکنش در تشکیل راحت ترکیبات با مراکز نامتقارن اهمیت این دسته از واکنش ها را دو چندان می نماید. از جمله دی انهای مورد استفاده در کاربردهای واکنش دیلز – آلدر ترکیبات حلقوی سولفوردار می باشد. در سالهای اخیر مطالعات زیادی روی ترکیبات حلقوی سولفوردار جهت سنتز ترکیبات مختلف شده است. در این میان ترکیبات حلقوی سولفوردار H 2- تیوپیران -۴- ا‌ًُن از اهمیت خاصی برخوردار می باشند. اهمیت این ترکیبات از آنجا ناشی می شود که با استفاده از واکنش دیلز – آلدر این ترکیبات می توان بر محدودیت اساسی واکنش های دیلز – آلدر یعنی واکنش پذیری کم یا عدم واکنش پذیری دی انهای سیس غلبه نمود. دی انهای سیس اغلب هیچ محصول افزایشی در واکنش با دی انوفیلها تولید نمی کنند ولی در عوض دی انهای ترانس هزار برابر فعالتر از دی انهای مشابه سیس می باشند. این عدم واکنش پذیری مربوط به ازدحام فضایی موجود در دی انهای سیس می باشد. یک استراتژی مناسب جهت فائق آمدن بر این مشکل، استفاده ازH 2- تیوپیران -۴- ان می باشد. اولین بار گروه پروفسور Ward و همکارانش از کانادا موفق به انجام واکنش های دیلز – آلدر با استفاده از این ترکیبات به عنوان جانشینان مناسب دی انهای سیس شدند.

این گروه با انجام واکنش دیلز – آلدر بین دی هیدروتیوپیران -۴-ان با دی انوفیلهای خاص و در ادامه سولفورزدایی محصولات، موفق به شناسایی محصولاتی شدند که هم ارز با محصولات دیلز – آلدر حاصل از دی انهای سیس که توانایی شرکت در واکنش دیلز – آلدر را نداشتند، می باشند.  با توجه به اهمیت این واکنشها، بر آن شدیم که در این پژوهش به ادامه مطالعات بپردازیم و سنتز ترکیبات جدیدی از این نوع را انجام دهیم.

شرح آزمایش:

در یک بالن تقطیر کاملا خشک حدود ۳ گرم آنتراسن .۲ گرم مالئیک انهایدراید و ۲۰ میلی لیتر تولوئن می ریزیم و ۲ عدد سنگ جوش اضافه کرده ۴۰ دقیقه رلکس می کنیم.پس از خنک شدن محتویات بالن رسوب حاصل را صاف می کنیم بعد از خشک شدن رسوب راندمان را محاسبه می کنیم

 


نوشته شده در تاريخ دو شنبه 27 آذر 1391برچسب:, توسط aryan

 

استخراج ” آزمایشگاه شیمی آلی”

 

 

استخراج روشی است برای جداسازی که مستلزم انتقال جسمی از یک فاز به فاز دیگر است.این روش بر مبنای پخش فاز بنا نهاده شده است .جسم می تواند در بین دو فاز نامحلولی که با آنها در تماس است پخش متعادلی پیدا کند و نسبت این تعادل بستگی به پایداری نسبی جسم در هر یک از دو فاز دارد.زمانی که دو فاز مایعات مخلوط نشدنی باشند روش استخراج مایع – مایع نامیده می شود.

الف.استخراج مایع – مایع

در بعضی مواقع لازم است برای بازیابی یک جسم آلی از محلول آبی از روش غیر از تقطیر استفاده می شود.یکی از این راه ها تماس دادن محلول آبی با یک حلال غیر قابل امتزاج با آب است.اگر حلال خاصیت جدا سازی را داشته باشد بیشتر مواد آلی از لایه آبی به حلال آلی (غیر قابل امتزاج با آب ) انتقال پیدا می کند.

این روش را که ” جسم حل شده در آب به وسیله یک حلال آلی دیگر جدا می شود ” استخراج می نامند.یکی از خواص حلال که برای استخراج به کار برده می شود این است که قابلیت حل شدن آن در آب یا هر ماده دیگری که جسم آلی را در خود حل کرده کم باشد و یا اصلا حل نشود.همچنین باید فرار باشد تا به راحتی بتوان آن را از ترکیب یا ترکیبات آلی استخراج شده جدا کرد.

بنابراین جسم استخراج شونده باید در حلال استخراج کننده به خوبی حل شود و قابلیت انحلال در این حلال بسیار بیشتر از آب باشد,ضمن اینکه حلال استخراج کننده نباید هیچ واکنشی با آب و یا مواد قابل استخراج بدهد.

برای انتخاب حلال مناسب برای استخراج بررسی هایی مشابه آنچه که در بلور گیری انجام می دهند لازم است

۱-به خوبی جسم مورد استخراج را در خود حل کند (ضریب توزیع مناسب داشته باشد )

۲-حلالیت آن در حلال جسم مورد نظر کم باشد

۳-نا خالصی ها و یا اجسام دیگر موجود را خیلی کم و یا اصلا استخراج نکند

۴-به سهولت بتوان آن را پس از عمل استخراج شده جدا کرد

۵-واکنش شیمیایی با جسم حل شونده نداشته باشد

ساده ترین حالت استخراج آن است که جسم در دو حلال غیر قابل اختلاط پخش شود.از نظر کمی این پخش را بر حسب ضریب پخش یا توزیع بیان می کنند.در محلول های رقیق یک جسم بین دو حلال غیر قابل امتزاج توزیع می شود تا اینکه نسبت غلظت در یک حلال به غلظت در حلال دیگر عدد ثابتی باشد.

حل شدن ماده استخراجی در هر فاز به دو مورد بستگی دارد:

 ۱-به قابلیت حل شدن ماده استخراج شونده ۲-به حجم هر فاز

اثر نمک روی حلالیت

حلالیت اجسام آلی در آب به طور مؤثری توسط حضور نمک های معدنی حل شده تحت تأثیر قرار می گیرند.برای مثال اتانول که به طور کامل با آب خالص قابل امتزاج است فقط به طور جزئی در محلول های مائی قوی از سدیم کلرید , پتاسیم کربنات و برخی دیگر از نمک های معدنی معین حل می شوند.

این پدیده که از اثر نمک در خارج سازی جسم به وجود می آید به طور متداول با نمک های دارای یون های با شعاع کوچک و بار متمرکز اتفاق می افتد افزایش نمک دو اثر دارد:

الف)حلالیت حلال در آب کم می شود

ب)حلالیت ماده جامد آلی در آب کم می شود

روش استفاده از قیف جدا کننده یا دکانتور

استخراج در کارهای آزمایشگاهی توسط تکان دادن محلول مورد استخراج با حلال درون قیف جدا کننده شیشه ای صورت می گیرد.قیف کشیده مخروطی شکل با دنباله کوتاه برای این منظور به کار می برند قیف حاوی مخلوط را خوب تکان دهید تا تمام مایعات غیر قابل حل به صورت فیزیکی مخلوط شوند,سپس آن را روی پایه ای به حال خود بگذارید تا لایه ها به به طور کامل از هم جدا شوند.به هم زدن شدید مخلوط ها وقتی دلخواه بوده که تولید امولسیون نکند.,زیرا بعدا برای برای جداسازی لایه ها به مزاحمت بر میخوریم.در چنین مواقعی بهتر است لایه ها را خیلی ملایم به هم زد.در ضمن به هم زدن یک دست را باید روی سر قیف و دست دیگر را روی شیر قیف قرار داد تا سر و شیر قیف محکم در جای خود نگه داشته شوند.فشار درون قیف را گاهی با معکوس نگه داشتن (دنباله قیف به طرف بالا) و یک لحظه باز کردن شیر کاهش می دهند.این عمل به ویژه زمانی مهم است که از حلال بسیار فرار نظیر اتر استفاده شود.

احتیاط:دنباله قیف جدا کننده را در موقع کاهش فشار درون آن نباید به طرف افراد دیگر قرار داد زیرا در این زمان قطراتی از مایع درون دنباله قیف با فشار خارج می شود.

در زمان جدا کردن مایعات سر قیف را باید سست کرد و یا برداشت,سپس لایه پایینی را به دقت درون ارلن مایر ریخت ضمنا باید شیر قیف را با دو دست نگه داشت تا از سست شدن آن و هدر رفتن مایع جلوگیری کرد .اگر ماده درون قیف خاصیت خورندگی داشته و یا ارزشمند باشد در عمل بهتر است که یک بشر را زیر قیف قرار داده و سپس قیف را برای هر مدتی که لازم است به حال خود باقی گذاشت اگر فقط یک لایه باید نگه داری شود لازم است دو لایه را تا زمانی که اطمینان کامل حاصل نشده که کدامیک حاوی ماده دلخواه است نگه داری کرد.

همانگونه که مرز دو مایع به نزدیکی شیر قیف برسد سرعت خارج شدن مایع از قیف را باید کاهش داد.پس از اینکه جداسازی انجام شد شیر را بسته و محتویات قیف را به آهستگی به چرخش درمی آورندتا قطرات مایع سنگین تر از درون یک ظرف تمیز می ریزند.لایه بالایی نباید از شیر قیف خالی شود زیرا منجر به آلوده شدن آن با لایه اول که درون دنباله قیف وجود دارد می شود.لایه آلی را معمولا با افزایش معرف خشک کننده جامد از آب جدا می کنند و حلال را به وسیله عمل تقطیر حذف می کنند.

در هر بار استفاده از قیف شیر آن را باید با ماده چرب کننده روان کرد تا ضمن کار با قیف شیر آن محکم نشود و یا مایع قیف نشست ندهد.پس از استفاده از قیف جداکننده باید آن را کاملا تمیز و شیر آن را مجددا چرب کرد تا در یک موقعیت محکم نشود و بعدا به سهولت بتوان آن را باز کرد.اگر از مواد سیلیکون دار برای روان کردن شیر استفاده می کنید باید قبل از تمیز کردن قیف ماده روان کننده را با مخلوط اکسنده از سطح شیشه زدود تا لایه نازک سیلیس روی شیشه به وجود نیاید.مسئله محکم شدن شیر قیف های جدا کننده آن قدر جدی است که بسیاری ترجیح می دهند که قطعات قیف ها را به صورت جدا از هم نگه داری کنند.برای باز کردن شیرهایی که محکم شده اند قسمت خارجی شیر یا بدنه قیف را به وسیله بخار آب گرم می کنند.در همین زمان فشار کمی به شیر وارد می آید و آن را باز می کنند ( در ضمن برای محافظت انگشتان باید از حوله استفاده کرد)

شرح آزمایش:

مقدار ۲۰ میلی لیتر کلروفرم که مقداری آلودگی اسیدی دارد داخل قیف دکانتور ریخته و سپس ۱۰ میلی لیترمحلول ۱۰% سدیم کربنات به آن اضافه کنید در اثر این افزودن مقداری گاز دی اکسید کربن تولید شده که با باز کردن شیر دکانتور خارج می شود حال قیف را به روی خلقه قرار داده و در آن باز کنید بعد از جدا شدن کامل دو فاز فاز زیری که کلروفرم می باشد را داخل بشری جمع آوری نمایید و برای گرفتن آب به آن مقداری کلرید کلسیم به عنوان خشک کننده اضافه کنید و بعد در داخل ارلن تمیز و خشک با یک قیف شیشه ای کاملا خشک و صاف کنید و محلول به دست آمده را به مسئول آزمایشگاه تحویل دهید

استخراج از جامدها:

استخراج آلکالوئیدها از برگها و ساقه ها ,عصاره های معطر از بذرها ,اسانس عطر از گلها و قند از نیشکر اولین نمونه برای عمل استخراج است .حلال های متداول که برای این منظور به کار گرفته می شوند اتر ,متیلن کلرید ,کلروفرم ,استون , انواع الکل ها و آب هستند دستگاه متداول برای استخراج مداوم از جامدات توسط حلال های فرار به نام استخراج کننده سوکسله میباشد.

بخارات حاصل از حلال در حال جوش که درون فلاسک است از لوله عمودی سمت چپ به داخل مبرد بالای دستگاه می رسد مایع متراکم شده که به داخل انگشتانه ای جامدی قرار گرفته است که می بایست استخراج شود محلول محتوی جسم استخراج شده از جامد از خلل و فرج کاغذ صافی انگشتانه ای به خارج نشست یافته و زمانی که لوله سیفون سمت راست پر شود به داخل فلاسک حلال برگردانده می شود درون این دستگاه عمل سیفون به طورمتناوب اتفاق می افتد مایع به فلاسک برنمی گردد تا اینکه سطح مایع درون انگشتانه به قسمت بالای لوله سیفون برسد.هر وقت تمامی مایع درون سیفون و انگشتانه خارج شود,دوباره چرخه پر و خالی شدن سیفون از سر گرفته می شود.

در استخراج جامد-مایع بازده جداسازی به حلالیت ترکیب مورد نظر در حلال استخراج کننده به حجم حلال مورد استفاده و به تعداد دفعاتی که عمل استخراج تکرار می شود بستگی دارد.

عواملی که باعث کاهش بازده استخراج جامد-مایع می شوند عبارتند از : درشتی ذرات مخلوط جامد ,زمان کم تماس حلال با جامد و خوب مخلوط نکردن حلال و جامد.

شرح آزمایش:

۲۵ گرم چای خشک , ۲۵ گرم کربنات کلسیم و ۲۵۰ میلی لیتر آب مقطر را در یک بالن مجهز به مبرد بریزید و بالن را به مدت ۲۰ دقیقه در شعله حرارت دهید تا رفلاکس انجام گیرد زمانی که محلول داغ است آن را توسط کاغذ صافی صاف کنید اگر حرکت محلول در کاغذ صافی کند شد آن را عوض کنید پس از این اعمال مایع زیر صافی را در حرارت اتاق سرد کرده و دوباره آن را با ۲۵ میلی لیتر کلروفرم توسط قیف جدا کننده استخراج کنید .توجه داشته باشید که دکانته کردن به مدت ۵ الی ۸ دقیقه انجام گیرد و به هیچوجه شدیداً هم زده نشود زیرا تولید امولسیون می کند برای این منظور خیلی آهسته چند بار قیف را وارونه و سپس به جای خود برگردانید سپس اجزای استخراج شده را که لایه زیر می باشد در یک ارلن ریخته و توسط تبخیر کلروفرم کافئین را به صورت پودر جمع آوری کند.

 


نوشته شده در تاريخ دو شنبه 27 آذر 1391برچسب:, توسط aryan

 

میکروب ها باهوش هستند

                                 

بسیاری از باکتری ها و آغازیان رفتارهای هوشمندانه و قابل ملاحظه ای از خود نشان می دهند. این رفتارهای هوشمندانه، از آن نوع که در انسان و یا سایر موجودات پیچیده می بینیم، نمی باشد چرا که موجودات تک سلولی نه تنها مغز، بلکه سیستم عصبی هم ندارند. به عبارت دیگر آنها کامپیوترهای زیستی هستند که می تواند اطلاعات را پردازش کند. در این مطلب به چندین مثال برجسته از این رفتارهای هوشمند اشاره می کنیم. بخش اعظم گونه های موجود بر روی زمین تک سلولی هستند. بسیاری از این موجودات تک سلولی تا کنون شناخته نشده اند و بسیاری از آنهایی هم که شناسایی شده اند، نام گذاری نشده اند. اما بخش کوچکی از گونه های تک سلولی که تا به حال مورد مطالعه قرار گرفته اند، توانایی های قابل ملاحظه ای از خود نشان داده اند. بسیاری از این توانایی ها فیزیکی هستند؛ به طور مثال، برخی از آنها می توانند برای صدها هزار سال غیر فعال باشند و یا در محیطی رشد کنند که سایر میکروارگانیسم ها بلافاصله در آن از بین می روند. بسیاری از باکتری ها و آغازیان رفتارهای هوشمندانه و قابل ملاحظه ای از خود نشان می دهند و به نظر می آید آنها کامپیوترهای زیستی هستند که می تواند اطلاعات را پردازش کند. در اینجا به چندین مثال برجسته از این رفتارهای هوشمند اشاره می کنیم. ارتباطات باکتری ها بوسیله مواد شیمیایی با یکدیگر ارتباط برقرار می کنند. آنها این کار را به دلایل مختلفی انجام می دهند که درک آن مشکل است. یکی از ساده ترین این باکتری ها باسیلوس سوبتیلیس می باشد. اگر باسیلوس سوبتیلیس در محیط فقیر مواد غذایی رشد کند، ماده شیمیایی خاصی به اطراف خود ترشح می کند. این ماده به باکتری های اطراف می گوید “غذای کافی اینجا وجود ندارد، از اینجا بروید وگرنه هردو از گرسنگی خواهیم مرد”. در جواب به پیغام این مواد شیمیایی، سایر باکتری ها با فاصله از یکدیگر قرار گرفته و شکل کلنی ها کاملا تغییر می کند. تصمیم گیری بسیاری از موجودات تک سلولی، قادر به شناسایی تعداد باکتری های هم گونه خود که در نزدیکی آنها قرار دارند هستند. این توانایی به “حس حد نصاب” (quorum sensing) معروف است. هر باکتری مقدار کمی از یک ماده شیمیایی را به محیط اطرافش ترشح می کند که می تواند توسط گیرنده¬های موجود در دیواره سلولی آنها تشخیص داده شود. اگر تعداد زیادی باکتری در محیط باشد، تمام باکتری ها یک نوع ماده شیمیایی ترشح کرده و میزان این ماده شیمیایی به نقطه بحرانی رسیده و سبب تغییر در رفتار باکتری ها می شود. باکتری های بیماری زا اغلب با استفاده از این حس، تصمیم می گیرند چه زمانی به میزبان خود حمله کنند. زمانی که به تعداد کافی برای فشار به سیستم ایمنی تکثیر شدند، به صورت دسته جمعی حمله به موجود میزبان را آغاز می کنند. بنابراین، به نظر می آید با جلوگیری از انتقال علائم بین این باکتری ها می توان راهی را برای مقابله با آنها پیدا کرد. شهر نشینی (تشکیل جوامع باکتریایی) باکتری ها نه تنها می توانند با یکدیگر ارتباط برقرار کنند و با هم همکاری داشته باشند بلکه می توانند تشکیل جوامعی را بدهند. نتیجه این کار، بیوفیلم یا همان لایه های نازک لعابی شکل داخل لوله های آب، یا سطوح آشپزخانه در خانه های دانشجویی(!) می باشد. آنها همچنین در پناهگاه های زیستی مانند لایه داخلی دستگاه گوارش انسان و یا هرجایی که آب وجود داشته باشد یافت می شوند. بسیاری از گونه ها در کنار یکدیگر در “شهرهای باکتریایی” از مواد زائد یکدیگر استفاده می کنند و از منابع غذایی با همکاری یکدیگر بهره برداری کرده و از یکدیگر در مقابل خطرات خارجی مانند آنتی بیوتیک ها محافظت می نمایند. تسریع در جهش زایی بسیاری از میکروب ها قادر به سرعت بخشیدن به میزان جهش در ژن های خود هستند. این امر به آنها توانایی های جدیدی می بخشد که می تواند برای شرایط سخت مفید باشد. این امر از آنجایی که بسیاری از جهش ها مضر و حتی کشنده می باشند، برای باکتری خطرساز است و به عنوان آخرین راه حل و زمانی که چیز زیادی برای از دست دادن باقی نمانده است، استفاده می شود. مثال های زیادی در این زمینه وجود دارند: اشریشیا کلی بسیار سریع تر در شرایط استرس جهش می یابد و نشان داده شده است که مخمر هم از همین ترفند استفاده می کند. در اوایل دهه ۹۰ میلادی، محققین پیشنهاد دادند که باکتری ها ممکن است راه خاصی برای انتخاب جهش ها داشته باشند. در این زمینه ایده جهش مستقیم (directed mutation) بسیار بحث برانگیز بود. جهت یابی بسیاری از جانوران می توانند از فواصل زیادی راه خود را پیدا کنند. پرنده هایی که کوچ می کنند و زنبور عسل بهترین مثال ها برای این پدیده هستند. میکروب ها نیز در این زمینه تبحر دارند. جلبک های تک سلولی که به شکل دسته جمعی کلامیدوموناس نام دارند، به سمت نور شنا می کنند البته فقط زمانی که آن نور در طول موجی باشد که آنها برای فتوسنتز از آن استفاده می کنند. مشابه جلبک های تک سلولی، بعضی از باکتری ها به سمت مواد شیمیایی که در محیطشان وجود دارد، حرکت می کنند که به این رفتار کموتاکسیس می گویند. برای مثال اشریشیا کلی همانند کوسه ای که رد خون را می گیرد، اگر حتی مولکول های اندکی از غذا وارد محیط اطرافش شود، به سمت آن حرکت می کند. گروه دیگری از باکتری ها به طرف نیروی مغناطیسی زمین به گونه ای صف می شوند که قادر به حرکت مستقیم به سمت شمال یا جنوب شوند. این باکتری ها که معروف به باکتری های مغناطیسی هستند، این توانایی ویژه را از اندامک های پوشیده شده از کریستال های مغناطیسی خود کسب نموده اند. اما شاید بهترین مثال از جهت یابی میکروب ها، کپک پلی سفالوم (Physarum polycephalum) باشد. کلنی های شبه آمیب این موجود، همیشه کوتاهترین راه را در یک مسیر پیچیده انتخاب می کنند. یادگیری و حافظه وقتی آمیب Dictyostelium سطحی را برای غذا جستجو می کند، گاهی تغییر مسیر داده و بر می گردد ولی این تغییر مسیرهایش تصادفی نمی باشد. این موجود با تغییر جهت های هدفمند، آخرین چرخش خود در مسیر را به خاطر می سپارد. اسپرم انسان نیز دارای چنین توانایی می باشد. اشریشیا کلی حتی بهتر از این عمل می کند. این باکتری بخشی از چرخه زندگی خودش را صرف گشت و گذار در دستگاه گوارش و روبرو شدن با محیط های مختلف می کند. در طی این مدت، با قند لاکتوز قبل از یافتن قند مرتبط با آن یعنی مالتوز مواجه می شود. در مواجهه با لاکتوز، سازوکار بیوشمیایی تجزیه این قند فعال می شود اما در همین حال، سیستم تجزیه مالتوز نیز تا حدودی فعال می شود تا برای مرحله بعد که برخورد با مالتوز می باشد، آماده باشد. اما در تحقیقات دانشمندان اسرائیلی، پژوهشگران این باکتری را برای چندین ماه در محیط کشت واجد لاکتوز و بدون مالتوز، رشد دادند. آنها متوجه شدند که این باکتری به تدریج رفتارش را تغییر داده و تمایلی به فعال کردن سیستم تجزیه مالتوز نشان نمی دهد. ترجمه: سمانه مفاخری ویرایش: کسری اصفهانی منبع: نیوساینتیست

 

 


نوشته شده در تاريخ دو شنبه 27 آذر 1391برچسب:, توسط aryan

 

الکتروفورز(electrophoresis)

 

به حرکت ذرات در یک مایع تحت میدان الکتریکی گویند.

دستگاه الکتروفورز

به سبب اینکه ماکرومولکول های زیستی مانند DNA و پروتئین باردار هستند می توان با قرار دادن آنها در یک میدان الکتریکی آنها را بر اساس خواص فیزیکی مانند شکل فضایی ,وزن مولکولی و بار الکتریکی تفکیک کرد.برای این منظور از روشی به نام الکتروفورز استفاده می شود.روش های مختلف الکتروفورزی برای تفکیک و مطالعه بیومولکول ها اعم از اسید نوکلئیک یا پروتئین ها ابداع شده است.الکتروفورز ژل از یک محیط نیمه جامد (ژل) به عنوان فاز ثابت استفاده میشود

این نوع الکتروفورز بر حسب نوع ژل به کار گرفته شده به دو نوع الکتروفورز ژل پلی اکریل آمید (PAGE) و الکتروفورز ژل آگارز تقسیم میشود.الکتروفورز PAGE دارای قدرت تفکیک بسیار بالایی بوده و برای تفکیک پروتئین ها و اسیدهای نوکلئیک به کار گرفته می شود. به منظور بررسی پروتئین ها با استفاده از PAGE به سبب اینکه پروتئین ها دارای بار مختلف هستند,معمولا برای اینکه تفکیک فقط بر اساس وزن مولکولی انجام شود به بافر ماده ی شیمیایی SDS (سدیم دو دسیل سولفات) اضافه می شود. SDS مولکول بزرگی با بار منفی است این ماده باعث واسرشت شدن پروتئین ها شده و به آنها متصل می شود. به ازای هر دو اسید آمینه یک مولکول SDS  به پروتئین متصل می شودکه باعث القا بار منفی متناسب با وزن مولکولی به پروتئین می شود.هرچه غلظت پلی اکریل آمید بیشتر باشد قدرت تفکیک ژل بیشتر خواهد بود و مولکول های دارای وزن مولکولی نزدیک به هم را بهتر تفکیک می نماید. با توجه به اندازه مولکول پروتئین غلظت ژل متفاوت است.

برای تفکیک اسید های نوکلئیک در صورت امکان از ژل آگارز استفاده می شود. تهیه ژل مزبور به مراتب سریع تر و آسانتر از ژل پلی اکریل آمید بوده و هزینه کمتری را در بر میگیرد. معمولا برای تفکیک  قطعات بزرگ DNA (بزرگ تر از ۵۰۰ جفت باز) در صورتیکه هدف صرفا بررسی کیفی و تفکیک باشد استفاده از ژل آگارز انتخاب اول است.برای تفکیک قطعات کوچک DNA  دو رشته ای و قطعات DNA تک رشته ای از ژل پلی اکریل آمید استفاده می شود.قدرت تفکیک ژل های مزبور ارتباط مستقیمی با غلظت آنها دارد. برای مثال برای تفکیک قطعاتی به اندازه ۱۰۰ جفت باز از آگارز ۳% و برای قطعات حدود ۲۰۰۰ جفت باز از آگارز ۸/۰% استفاده می شود. در صورتیکه نیاز به تفکیک DNA به صورت تک رشته ای باشد از مواد واسرشت کننده نظیر اوره , فرمالدهید یا فرمامید در ژل هم زمان با الکتروفورز استفاده می شود. به این نوع  ژل ها ژل واسرشت کننده می گویند. چنین ژل هایی پیچ و تاب های اسید نوکلئیک را از هم باز کرده و بنابراین تفکیک مولکول ها فقط بر اساس طول و نه ساختار دوم انجام می شود. در این ژل ها مولکول های کوچک تر در مقایسه با مولکول های بزرگ تر سریع تر حرکت کرده و مسافت بیشتری را طی می کنند. از روش PAGE برای بررسی جهش ها و تعیین توالی DNA استفاده می شود.

 


نوشته شده در تاريخ دو شنبه 27 آذر 1391برچسب:, توسط aryan

 

رنگ آمیزی و ازمون گرم

 

 

معروفترین نوع رنگ آمیزی مرکب نوع گرم می باشد . این روش مفیدترین روش تشخیص باکتریها می باشد.

میکروبشناسی بنام کریستیان گرم در سال ۱۸۸۴ بطور تصادفی واکنشی را کشف کرد که بعدها واکنش رنگ آمیزی گرم نامیده شد.

 

بر این اساس باکتریها با توجه با ساختمان دیواره یاخته ای (سلولی) به دو بخش بزرگ و کلی تقسیم می شوند: باکتریهای گرم مثبت و گرم منفی . تفاوت عمده بین این دو گروه تفاوتهای ساختاری(ساختمانی) بین این دو گونه می باشد به این ترتیب که در گونه گرم مثبتها در دیواره سلولی نوعی پلی ساکارید بکار رفته و دیواره سلولی آن کمی ضخیمتر می باشد در صورتیکه در دیواره سلولی نوع گرم منفی مقدار چربی بیشتری بکار رفته و دیواره سلولی آن کمی نازکتر از نوع گرم منفی می باشد.

بر همین اساس در رنگ آمیزی گرم با توجه به این تفاوت مهم در دیواره سلولی ، از دو نوع رنگ استفاده می شود ، رنگ اولیه کریستال ویوله می باشد . هنگامیکه محلول کریستال ویوله به گسترش باکتریایی اضافه می شود این رنگ با ریبونوکلئات موجود در دیواره سلولی ترکیب شده و کمپلکس کریستال ویوله – ریبونوکلئات را بوجود می آورد و بعد از شستشوی رنگ اضافی ، محلول ید را بکار می برند . این محلول ید که ترکیبی فلزی می باشد به رنگ متصل شده و یک ترکیب رنگی غیر محلول ایجاد می کند بنام کمپلکس کریستال ویوله –ید که در سر دیگر آن متصل شده به ریبونوکلئات موجود در دیواره سلولی و تشکیل کریستال ویوله – ید – ریبونوکلئات داده است در حالیکه در باکتریهای گرم منفی چنین کمپلکسی ایجاد نمی شود. این پیوند در باکتریهای گرم مثبت بسیار پایدار است و در مرجله بعدی توسط ماده رنگ بر شکسته نمی شود و رنگ بنفش کریستال ویوله را در خود حفظ کرده بنابراین باکتریهای گرم مثبت زیر میکروسکوپ بنفش رنگ دیده می شوند.

از طرفی در دیواره سلولی باکتریهای گرم منفی مقدار چربی بیشتری بکار رفته است بنابراین چربیها در الکل استن که در مرحله بعدی بعنوان رنگ بر بکار می روند ، محلول هستند و در اثر این واکنش چربیها از دیواره سلولی خارج شده و در اثر شستشو با حلال رنگ بر ، رنگ کریستال ویوله هم از سطح باکتری خارج می شود . با خروج چربی توسط ماده رنگ بر ، بر اندازه منافذ دیواره سلولی افزوده شده که این امر باعث بی رنگ شدن سریع باکتریهای گرم منفی می شود .در این مرحله باکتریهای گرم منفی از کریستال ویوله پاک می شوند . بنابراین بعد از شستشو توسط آب و افزوده شدن رنگ دوم یعنی سافرانین (فوشین) ، این رنگ به دیواره سلولی باکتریهای گرم منفی جذب شده و باکتریها به رنگ قرمز در می آیند و در بررسی میکروسکوپی ، باکتریهای گرم منفی برنگ قرمز دیده می شوند.

اکثر باکتریهای موجود ، گرم منفی هستند البته بعضی از باکتریها ، مخمرها و تعدادی از کپکها گرم مثبت هستند.

بنابراین مراحل رنگ آمیزی گرم را می توان به شرح زیر بیان نمود:

۱-        تهیه گسترش روی لام : ابتدا از نمونه باکتری  یک گسترش روی لام تهیه می کنید.

۲-        رنگ آمیزی با کریستال ویوله : در این مرحله مقداری از رنگ کریستال ویوله را با قطره چکان به روی سطح گسترش میکروبی روی لام بریزید و بگذارید ۱ دقیقه بماند تا رنگ در دیواره سلولی میکروبها نفوذ کند.

۳-        مرحله شستشو: پس از سپری شدن مدت زمان ۱ دقیقه ، رنگ اضافی روی لام را خالی کرده و با استفاده از آب مقطر سطح روی گسترش را شستشو دهید.

۴-        مرحله اضافه کردن محلول ید : جند قطره از محلول ید را روی گسترش پخش نموده و بگذارید بمدت ۱ دقیقه به همان حالت بماند . بعد محلول اضافی را خالی کرده و با آب مقطر لام را شستشو دهید.

۵-        مرحله رنگ بری با استفاده از استن – الکل : لام را با زاویه ۴۵ درجه نگهدارید بعد با استفاده از محلول رنگ بر الکل – استن که بر روی گستره می ریزید بسرعت آنرا بی رنگ کنید. دقت کنید مرحله بی رنگ سازی بیش از اندازه نباشد. بعد از آن لام را بسرعت بشوئید . این عمل ، بی رنگ شده را متوقف خواهد کرد.

۶-        رنگ آمیزی با سافرانین : در این مرحله سطح گسترش را با رنگ ثانویه یعنی سافرانین بپوشانید و ۳۰ تا ۶۰ ثانیه صبر کنید . بعد از آن رنگ اضافی را خالی کرده و با آب مقطر لام را شستشو دهید.

۷-        لام رنگ آمیزی شده را آهسته روی کاغذ خشک کن قرار دهید ولی کاغذ را روی گسترش نکشید.

نکات مهم :

۱-        حرارت بیش از اندازه هنگام تثبیت گسترش باعث پاره شدن دیواره سلولی باکتری شده . بنابراین باکتری گرم مثبت رنگ اولیه (کریستال ویوله) را هنگام رنگ بری از دست می دهد و رنگ ثانویه را جذب می نماید و در نتیجه باکتری گرم مثبت ، بصورت گرم منفی دیده می شود.

۲-        اگر گسترش ضخیم باشد هنگام مرحله بی رنگ شدن ، ممکن است مانند یم گسترش معمولی رنگ نشود و این مسئله باعث خطا در تشخیص شما در گرم منفی یا مثبت بودن باکتری خواهد شد.

۳-        غلظت درست و تازه بودن رنگها هم در رنگ آمیزی موثر است .

۴-        رنگ بری بیش از حد ممکن است باعت پاره شدن جدار باکتریهای گرم مثبت شده در نتیجه این باکتریها رنگ کریستال ویوله خود را از دست داده و رنگ ثانویه را جذب می نماید و بصورت گرم منفی دیده می شود.

۵-        دقت شود هنگام تهیه گسترش روی لام از محیط کشت ، سن کشت باکتری باید ۲۴ ساعت یا کمتر باشد . بنابراین در محیط کشتهایی که از عمر آنها گذشته و کهنه شده اند ، در قابلیت نفوذ دیواره سلولی باکتریها تغییراتی حاصل می شود که خاصیت گرم مثبت بودن را از دست می دهد.

در رنگ آمیزی گرم مثبت باکتریها را به ۵ گروه تقسیم بندی می کنند:

۱-        میله ای (باسیل ) گرم مثبت ۲- میله ای گرم منفی ۳- کوکوس (گرد) گرم مثبت ۴- کوکوس گرم منفی ۵- باکتریهای بدون واکنش به رنگ آمیزی گرم.

در این رنگ آمیزی می توان هر باکتری ناشناخته ای را در یکی از این ۵ گروه قرار داده و با اطمینان ۴ گروه دیگر را حذف کرد و به مطالعه در مورد آن باکتری پرداخت .

خصوصیات باکتریهای گرم مثبت و گرم منفی :

۱-        باکتریهای گرم مثبت نسبت به پنی سیلین و مواد ضد باکتریایی حساستر از گرم منفی ها هستند.

۲-        گرم مثبت بودن یک باکتری خصوصیتی است که براحتی از بین می رود اما گرم منفی بودن تحت هیچ شرایطی از بین نمی رود . پس هنگام تشخیص و رنگ آمیزی باید به این نکته هم توجه داشت . یعنی در لامهای رنگ آمیزی شده گرم متبت ، باکتریهای گرم منفی هم دیده می شود اما در لامهای گرم منفی از یک کشت خالص هرگز باکتریهای گرم مثبت دیده نمی شوند.

۳-        باکتریهای گرم منفی سخت رشد ترند یعنی نیاز غذایی آنها پیچیده تر است .

۴-        باکتریهای گرم منفی نسبت به مواد اسیدی و قلیایی قوی و آنزیم لیزوزیم حساسترند. همه اینها موجب پاره شدن دیواره سلولی این باکتری و هضم و متلاشی شده آن می شوند.

طرز تهیه رنگها و محلولهای گرم :

۱-        کریستال ویوله :

- کریستال ویوله                        ۲ گرم

- اتانول ۹۵%                         ۲۰سی سی

- اگزالات آمونیوم(خالص)           ۸/.گرم

- آب مقطر                             ۸۰سی سی

کریستال ویوله را در اتانول حل کنید. اگزالات آمونیوم را در آب حل کنیدو سپس دو محلول را روی هم ریخته و بخوبی مخلوط کنید.

۲-        محلول ید:

- ید                                       ۱ گرم

- یدور پتاسیم                           ۲ گرم

- آب مقطر                             ۳۰۰ سی سی

ید و یدور پتاسیم را با هم در هاون بسائید تا کاملا نرم شود . مقدار کمی آب اضافه کنید تا محتویات هاون شسته شود. بقیه آب را هم اضافه کرده و کاملا مخلوط کنید . این محلول را باید در شیشه تیره رنگ نگداری کنید.

۳-        محلول سافرانین :

- سافرانین                              ۲۵ گرم

- اتانول ۹۵%                         ۱۰سی سی

- آب مقطر                             ۱۰۰سی سی

سافرانین را در اتانول حل کنید . آب مقطر را اضافه کرده و خوب مخلوط کنید . محلول را از کاغذ صافی عبور دهید.

۴-        محلول استن – الکل :

- اتانول ۹۵%                        ۷۰ سی سی

- استن                                  ۳۰سی سی

دو محلول را کاملا با هم مخلوط کنید.

 

آزمون حلالیت در پتاس:

ابتدا یک قطره از محلول پتاس ۳% روی یک لام تمیز ریختیم.سپس توسط یک چوب کبریت مقداری از کشت تازه ی باکتری را برداشته و در محلول پتاس (KOH) به طور دورانی حرکت دادیم.و چوب کبریت را پس از ۱۵-۱۰ ثانیه از روی لام بالا کشیدیم.باکتری های گرم منفی در اثر تخریب دیواره و بیرون ریختن DNA و سایر مواد داخل سلول یک حالت چسبندگی و کشسانی نشان می دهند ، در صورتی که در مورد باکتری های گرم مثبت اینچنین نیست.باید در مورد زمان به هم زدن باکتری ها در KOH دقت کنیم زیرا باکتری های گرم مثبت هم اگر زیاد در پتاس بمانند دیواره ی سلولیشان تخریب شده و همان حالت کشسانی را از خود نشان می دهند.

 


نوشته شده در تاريخ دو شنبه 27 آذر 1391برچسب:, توسط aryan

 

اندازه گیری نقطه جوش

تعریف نقطه جوش:نقطه جوش دمایی است که در آن دما, فشار بخار جسم مایع با فشار اتمسفر برابر می شود.

نقطه جوش به عوامل زیر بستگی دارد:

۱_ فشار: بین نقطه جوش وفشار ارتباط مستقیم وجود دارد . اگر به تعریف نقطه جوش دقت شود فشار سیستم بالا رود نقطه جوش نیز بالا می رود و بالعکس.

تاثیر فشار بر نقطه جوش:

نقطه جوش یک مایع با تغییر فشار خارجی تغییر می‌کند. نقطه جوش نرمال یک مایع ، دمایی است که در آن فشار بخار مایع برابر با یک اتمسفر باشد . نقطه جوش داده شده در کتابهای مرجع ، نقاط جوش نرمال می‌باشند . نقطه جوش یک مایع را می‌توان از منحنی فشار بخار آن بدست آورد و آن دمایی است که در آن فشار بخار مایع با فشار وارد بر سطح آن برابری می‌کند.

نوسانات فشار جو در یک موقعیت جغرافیایی ، نقطه جوش آب را حداکثر تا Cْ ۲ تغییر می‌دهد . ولی تغییر محل ممکن است باعث تغییرات بیشتر شود ، متوسط فشاری که هواسنج در سطح دریا نشان می‌دهد یک اتمسفر ، ولی در ارتفاعات بالاتر کمتر از این مقدار است. مثلا در ارتفاع ۵۰۰۰ پایی از سطح دریا متوسط فشاری که فشارسنج نشان می‌دهد atm 0.836 است و نقطه جوش آب در این فشار Cْ ۹۵٫۱ می‌باشد.

مولکولها در فاز گازی به سرعت حرکت میکنند و دائما به دیواره ظرف بر می خورند و منجر به وارد کردن فشار به دیواره آن می شوند میزان این فشار در یک درجه حرارت معین را فشار بخار تعادل جسم مایع در آن درجه می نامند . این فشار بخار به درجه حرارت بستگی دارد . این بستگی به آسانی با تمایل گریز مولکولها از مایع قابل توجیه است. با ازدیاد درجه حرارت انرژی جنبشی متوسط مولکولها افزایش می یابد و فرار آنها به فاز گازی آسان میشود . سرعت ورود مجدد مولکولها نیز رو به افزایش می رود و به زودی در درجه حرارت بالاتر تعادل برقرار می شود. ولی در این حال تعداد مولکولها در فاز گازی از تعداد آنها در درجه حرارت پایین تر بیشتر است و در نتیجه فشار بخار زیادتر است .

 اکنون نمونه مایعی را در نظر بگیرید که در یک درجه حرارت معین در ظرف سر گشاده ای قرار دارد و مولکولهای فاز بخار در بالای مایع می توانند از محوطه ظرف خارج شوند . بخاری که در بالای این نمونه است از مولکولهای هوا و نمونه تشکیل شده است . طبق قانون فشارهای جزئی دالتون ، فشار کل (خارجی) در بالای مایع برابر با فشارهای جزئی نمونه و هوا است :

             هواP + نمونهP = کلP

فشار جزئی نمونه برابر با فشار بخار تعادل آن در درجه حرارت معین است. اگر درجه حرارت بالا رود (بدین ترتیب فشار بخار تعادل نمونه زیاد میشود) تعداد مولکولهای نمونه در فضایی که در بالا و نزدیک مایع است افزایش می یابد و در نتیجه مقداری از هوا جابجا میشود . در درجه حرارت بالا فشار جزئی نمونه درصد بیشتری از فشار کل را تشکیل میدهد . با ازدیاد بیشتر درجه حرارت این عمل ادامه می یابد تا فشار بخار تعادل با فشار خارجی برابر شود و در این حال تمام هوا کاملا از ظرف خارج میشود . تبخیر بیشتر باعث جابجا شدن مولکولهای گازی نمونه خواهد شد . با توجه به این حقایق به این نتیجه میرسیم که فشار بخار تعادل یک نمونه یک حد نهایی دارد که به وسیله فشار خارجی معین میشود . در این حد سرعت تبخیر به مقدار زیادی افزایش می یابد (که با تشکیل حباب در مایع آشکار میشود) و این مرحله را عموما شروع جوشش می دانند. نقطه جوش یک مایع درجه حرارتی است که در آن فشار بخار مایع کاملا برابر با فشار خارجی شود. چون نقطه جوش مشاهده شده مستقیما به فشار خارجی بستگی دارد، از این جهت باید در گزارش نقطه جوش، فشار خارجی هم قید شود (مثلا نقطه جوش ۱۵۲ درجه سانتیگراد در فشار ۷۵۲ میلی متر جیوه). معمولا نقطه جوش استاندارد را در فشار آتمسفر (۷۶۰ mm Hg) تعیین میکنند .

نقاط جوش برای شناسایی مایعات و برخی از جامداتی که در حرارت پایین ذوب میشوند، مفید هستند. جامداتی که در حرارت بالا ذوب میشوند معمولا آنقدر دیر میجوشند که نمیتوان به راحتی درجه جوش آنها را اندازه گرفت .

۲_ ساختمان ترکیب: هر چقدر ساختمان ترکیب قطبی تر باشد نقطه جوش هم بیشتر می شود .اگر ترکیبی توانایی تشکیل پیوند هیدروژنی را داشته باشد نقطه جوش آن بالاتر می رود . ملاحظه می شود که در دو ترکیب H2S  و H2O اتم های مرکزی هم گروه می باشند ولی چون مولکول های آب توانایی تشکیل پیوند هیدروژنی دارد نقه جوش آن بالا تر خواهد بود.

هرچقدر ترکیبی دارای شاخه های جانبی کمتری باشد نقطه جوش آن بیشتر خواهد بود

۳_ ناخالصی ها: ناخالصی ها دو نوع اند:

الف)غیر فرار : مثل ترکیبات معدنی مانند Mgcl2 , Nacl که باعث افزایش نقطه جوش می شوند.

ب) فرار: ترکیبات فرار بسته به نوع ناخالصی می توانند هم باعث افزایش دمای جوش و یا کاهش آن شوند .

چگونگی جوشیدن یک مایع

وقتی که فشار بخار یک مایع با فشار جو برابر می شود، مایع شروع به جوشیدن می‌کند . در این دما ، بخار حاصل در داخل مایع سبب ایجاد حباب و غلیان خاص جوشش می‌شود . تشکیل حباب در دمای پایینتر از نقطه جوش غیر‌ ممکن است ، زیرا فشار جو  بر سطح مایع که بیش از فشار داخل آن است ، مانع از تشکیل حباب می‌شود . دمای مایع در حال جوش تا هنگامی که تمام مایع بخار نشده است ، ثابت می‌ماند در یک ظرف بدون درپوش حداکثر فشار بخاری که هر مایع می‌تواند داشته باشد برابر با فشار جو می‌باشد .

فشار بخار هر مایع تنها از روی دما معین می‌شود . بنابراین اگر فشار بخار ثابت باشد دما نیز ثابت است . برای ثابت ماندن دمای یک مایع در حال جوش باید به آن گرما داده شود. زیرا در فرایند جوش مولکولهای با انرژی زیاد از مایع خارج می‌شوند. اگر سرعت افزایش گرما بیش از حداقل لازم برای ثابت نگهداشتن دمای مایع در حال جوش باشد، سرعت جوشش زیاد می‌شود ولی دمای مایع بالا نمی رود.

روش های تعیین نقطه جوش:

به دو روش می توان نقطه جوش مواد را مشخص کرد : ۱) روش میکرو . ۲) روش ماکرو

تفاوت این دو روش در مقدار ماده ای است که در اختیار داریم . روش میکرو به مقدار کمی ماده نیاز دارد و از دستگاه های سادهه و به شکل ساده استفاده می شود.

دمای جوش  

در میان هیدروکربنها به نظر می‌رسد که عوامل تعیین کننده دمای جوش ، عمدتا وزن مولکولی و شکل مولکولی باشند ؛ این چیزی است که از مولکولهایی که عمدتا با نیروهای واندروالسی در کنار یکدیگرند ، انتظار می‌رود . در الکلها نیز با افزایش تعداد کربن ، دمای جوش بالا می‌رود و با شاخه‌دار شدن زنجیر ، دمای جوش پایین می‌آید. اما نکته غیر عادی ، در مورد الکلها این است که آنها در دمایی بالا به جوش می‌آیند . این دماهای جوش ، بسیار بالاتر از دمای جوش هیدروکربنها با وزن مولکولی یکسان است و حتی از دمای جوش بسیاری ترکیبها با قطبیت قابل ملاحظه بالاتر است . چگونه این پدیده را تبیین می‌کنیم؟ بدیهی است پاسخ این است که الکلها ، همانند آب ، مایع‌های بهم پیوسته هستند . دمای جوش بالای آنها به علت نیاز به انرژی بیشتر برای شکستن پیوندهای هیدروژنی است که مولکولها را در کنار یکدیگر نگه داشته‌اند . اگر چه اترها و آلدئیدها هم اکسیژن دارند ، اما هیدروژن در آنها فقط با کربن پیوند دارد ، این نوع هیدروکربنها آنقدر مثبت نیستند که بتوانند با اکسیژن ، پیوند قابل ملاحظه ای ایجاد کنند

شرح آزمایش (روش میکرو ):

ابتدا یک لوله مویین بر می داریم و یک طرف آن را روی شعله مسدود می کنیم سپس لوله مویین را از وسط دو تکه می کنیم. لوله هایی که یک سمت آن مسدود شده است مورد نیاز ماست.یک لوله آزمایشی بر می داریم و لوله مویین مورد نظر را از سر باز وارد لوله آزمایش می کنیم . حدود ۱ الی ۵/۱ سی سی از مایع مورد نظر که می خواهیم نقطه جوش آن را تعیین کنیم داخل لوله آزمایش می ریزیم. سپس توسط یک چسب نواری لوله آزمایش را به یک دما سنج متصل می کنیم بطوریکه مخزن جیوه ای دماسنج مماس با انتهای لوله آزمایش قرار گیرد. مجموعه خود را توسط گیره متصل به سه پایه وارد حمام دما قرار می دهیم تا حرارت غیر مستقیم ببیند.

ما در اینجا از حمام آب گرم استفاده می کنیم (می توانیم نتیجه بگیریم که دمای جوش مایع مورد نظر از ۱۰۰ درجه کمتر است.) وقتی کل سیستم آماده شد حرارت را روشن می کنیم آنقدر حرارت می دهیم تا از انتهای لوله مویین داخل لوله آزمایش حباب خارج شود.حبابها  ابتدا با سرعت کم وتعداد کم خارج می شود ولی پس از گذشت زمان تعداد و سرعت آنها افزایش می یابد. وقتیکه  حباب ها بصورت یکپارچه و متوالی خارج شدند حرارت را قطع می کنیم . اگر با شعله کار می کنیم تنها کشیدن شعله از زیر بشر کافیست ولی اگر با Heater کار میکنیم باید کاملا بشر را از روی آن جدا کنیم و تنها خاموش کردن Heater کافی نیست. با قطع کردن حرارت حمام سرد شده و دمای مایع مورد نظر کاهش می یابد لذا تعداد حباب ها کم می شود تا زمانیکه تمام می شوند. لحظه ای که هیچ حبابی خارج نشود و مایع مورد نظر از لوله مویین شروع به بالا رفتن کند باید دما خوانده شود و ثبت گردد . این دما نقطه جوش ما خواهد بود.

ما این کار را بر اساس تعریف نقطه جوش انجام می دهیم چون ما آنقدر به مجموعه حرارت می دهیم تا مایع به جوش آمده و حباب از آن خارج شود . خارج شدن حباب ها نشان دهنده آن است که فشار بخار مایع از فشار اتمسفر بیشتر است. وقتی حرارت را قطع می کنیم تعداد حباب ها کم می شود تا لحظه ای که دیگر هیچ حبابی خارج نمی شود و این به معنی آن است که فشار بخار مایع کاهش می یابد تا لحظه ای که با فشار اتمسفر برابر می شود بنابراین اگر ما این لحظه را ثبت کنیم همان دمای نقطه جوش خواهد بود.

 


نوشته شده در تاريخ دو شنبه 27 آذر 1391برچسب:, توسط aryan

 

تقطیر اغلب یکی از بهترین روش های خالص سازی برای مایعات است . در این عمل مایع را به کمک حرارت تبخیر می کنند و بخار مربوط را در ظرف جداگانه ای متراکم می کنند و محصول تقطیر را به دست می آورند.

هنگامی که  ناخالصی غیر فراری به مایع اضافه شود فشار بخار مایع تنزل پیدا می کند. علت این عمل این است که وجود جزء غیر فرار بر تبخیر مولکول های فراری که در سطح مایع بوده تاثیر گذاشته و قابلیت تبخیر مایع (فشار بخار مایع ) کم می شود. بنابراین باید درجه حرارت را بالا برد تا فشار بخار محلول در سطح محلول به فشار اتمسفر برسد. به عبارت دیگر نقطه جوش یک محلول حاوی جسم غیر فرار همواره از نقطه جوش حلال خالص بالا تر بوده و این صعود نقطه جوش با غلظت ماده حل شده متناسب است.

 

تقطیر دارای انواع گوناگونی می باشد:

۱ . تقطیر ساده :

این روش برای خالص سازی مایعاتی بکار می رود که ناخالصی موجود در آنها غیر فرار باشد.

وجود ناخالصی های غیرفرّار در مایع سبب کاهش فشار بخارآن می شود، زیرا وجود جزء غیر فرار به مقدار زیاد، غلظت جزء اصلی فرّار را پایین می آورد و قابلیت تبخیر مایع کم می شود، اماپس از تقطیر در باقیمانده ی تقطیر باقی می ماند و مایع به صورت خالص تقطیر می شود.

به طورکلی، بخاراتی که در سطح مایع است بیشتر از جسم فرّار تشکیل شده است و کمتر از جسم غیر فرّار است. ( قانون رائولت و دالتون )              

چنانچه مخلوطی از دو یا چند مایع داشته باشیم و دمای جوش آن ها به حد کافی با هم تفاوت داشته باشد، جدا کردن آن ها از طریق تقطیر ساده امکان پذیراست. ابتدا مایعی که نقطه ی جوش کمتری دارد تقطیر می شود و سپس اجزاء دیگر مخلوط، به تناسب افزایش دمای جوششان تقطیر می شوند و بدین ترتیب می توان آن ها را از یک دیگر جدا نمود. می توان گفت اختلاف نقطه ی جوش باید بیش از ٨٠ درجه سانتیگراد باشد.

برای تقطیر ساده، بالن تقطیر، مُبرد، رابط، دماسنج، و بالن دریافت کننده لازم است. نحوه آماده کردن دستگاه مطابق شکل زیر است در تقطیر یک مایع خالص، درجه حرارت دهانه ی خروجی رابط با درجه حرارت مایع جوشان بالن تقطیر، چنانچه بالن زیاده ازحد گرم نشود، یکسان است. چنانچه فقط اندازه گیری دمای جوش، مورد نظر باشد، می توان بدون مُبرد مقدار دمای جوش را تعیین کرد.

۲ . تقطیر جزء به جزء :

اگر مخلوطی از دو یا چند مایع داشته باشیم یعنی اینکه در مخلوط ناخالصی فرار وجود داشته باشد برای جداسازی آنها از تقطیر جزء به جزء استفاده می شود.

ستونهای تقطیر جز به جز انواع متعددی دارند و در تمام آنها یک مسیر عمودی برای انتقال بخار از ظرف تبخیر به مبرد وجود دارد . در یک ستون تقطیر در شرایط ایده آل بین فاز های مایع و بخار در سراسر ستون تعادل برقرار می شود و فاز بخار بالایی تقریبا به طور کامل از جزء فرارتر تشکیل می شود و فاز مایع پایینی نسبت به جزئی که فراریت کمتری دارد غنی تر می شود.می توان با یک ستون طویل ترکیب هایی را که اختلاف کمی در نقطه جوش دارند به طور رضایت بخشی از هم جداسازی نمود.معمولی ترین راه ایجاد تماس لازم بین فازهای بخار و مایع این است که ستون با مقداری ماده بی اثر مانند شیشه یا سرامیک یا تکه های فلزی پر شود که سطح تماس وسیعی را فراهم می کنند. حفظ افت مناسبی از درجه حرارت در ستون شرط بسیار مهمی برای یک تقطیر جز به جز خوب است. در حالت مطلوب درجه حرارت پایین ستون برابر نقطه جوش جز غیر فرار است . این درجه حرارت دائما در طول ستون کم می شود تا در دهانه خروجی به نقطه جوش جز فرار برسد.چنانچه ظرف به شدت گرم شود و بخار با سرعت بسیار زیادی حرکت کند تقریبا تمام ستون بطور یکنواخت گرم می شود و تفکیکی صورت نمی گیرد.

تقطیر در خلاء (تحت فشار کاهش یافته):

اگر یک ترکیب در حلالی حل شده باشد که به گرما حساس بوده و در دمای بالا تجزیه گردد با کاهش فشار , نقطه جوش حلال را کاهش می دهیم تا از تجزیه شدن ترکیب مورد نظر جلوگیری نمائیم.

تقطیر با بخار آب :

همان تقطیر ساده است با این تفاوت که هنگام تقطیر بخار آب را وارد دستگاه تقطیر می کنند. بخار آب باعث می شود که فشار بخار تغییر کند (فشار بخار کاذب ایجاد شود) بخار آب می تواند ترکیباتی که معمولا در آب حل نمی شودرا در خود حل کند مثلا روغن های خوراکی که از آفتابگردان یا سویا گرفته می شوند دارای بو هستند (بعلت ترکیبات آلی موجود در آنها) لذا از سوراخ های ته مخزن بخار آب وارد آن می کنند, حباب های حاوی بخار آب ناخالصی های موجود در روغن را در هنگام عبور از ترکیب حل می کنند و از سطح روغن خارج می شوند.همچنین ترکیبات آلی دیگری که دمای جوش آنها از دمای جوش آب کمتر است توسط بخار آب گرم شده و به بخار تبدیل می شوند و به طرف بالا حرکت می کنند و از سیستم خارج می شوند

شرح آزمایش (تقطیر ساده):

ابتدا بالونی را به یک گیره می بندیم و مخلوطی را که می خواهیم تقطیر (خالص سازی ) داخل بالون می ریزیم و دو عدد سنگ جوش داخل آن می اندازیم. یک سه راهی را که دهانه های آن به مقدار بسیار کمی چرب شده است به دهانه بالون متصل کرده و یک طرف آن را به مبرد (کندانسور) متصل می کنیم و مبرد را به گیره دیگری وصل می نماییم. به دهانه دیگر سه راهی یک ترمومتر متصل کرده یا با درپوش چوب پنبه ای مسدود می نماییم. در صورت استفاده از ترمومتر مخزن آن باید روبروی شاخه جانبی قرار گیرد.لوله پایین  مبرد را با شلنگ به ورودی آب و قسمت بالا را به خروجی آب متصل می کنیم. به طوری که هیچ گونه نشتی آب وجود نداشته باشد. شلنگ مورد استفاده بایستی نرم باشد و هنگام اتصال از فشار آوردن بیش از اندازه به مبرد اجتناب شود چون سبب شکستن آن می گردد. آب سرد باعث تبدیل بخار به مایع (میعان) می گردد شیر آب باید به آهستگی باز شود تا از جدا شدن شلنگ ها از مبرد جلوگیری شود. به هنگام عمل تقطیر نیز جریان بسیار کمی از آب کفایت می کند. برای جمع آوری مایع  تقطیر شده یک ارلن در محل خروجی مبرد قرار می دهیم با حرارت دادن بالون , مایع خالص از دهانه مبرد خارج می گردد که در این لحظه می توان دما را ثبت نمود که همان نقطه جوش است . در تمام مدت تقطیر مایع دما ثابت باقی می ماند. وقتی که حجم محلول موجود در بالن به حدود ۵ میلی لیتر رسید را متوقف می کنیم.

مزیتی که در تعیین نقطه جوش به روش تقطیر وجود دارد این است که اگر ناخالصی غیر فرار در مخلوط وجود داشته باشد تأثیر آنچنانی بر روی نقطه جوش نخواهد داشت . چون بخار ترکیب بالا آمده است و در حالت جوش این بخارات با مایع مورد نظر در حال تعادل می باشند لذا وقتی دمای بخار خوانده می شود همان دمای جوش مایع است

 


نوشته شده در تاريخ دو شنبه 27 آذر 1391برچسب:, توسط aryan

 

اندازه گیری نقطه ذوب (به روش میکرو)

الف)تعیین نقطه ذوب

نقطه ذوب یکی از ثابت های فیزیکی بسیار مفید می باشد که اطلاعاتی در مورد درجه خلوص و مشخصات ماده در اختیار قرار می دهد و با مقدار بسیار کمی از نمونه و با وسایل ارزان قیمتی قابل اندازه گیری می باشد.

نقطه ذوب دمایی است که در آن جسم جامد یا مایع خود در حال تعادل است و تا زمانی که این تعادل برقرار است دما ثابت می ماند ولی وقتی تمام جامد به مایع تبدیل شد حرارت داده شده باعث بالا رفتن دمای مایع می گردد.نقطه ذوب جسم به عوامل زیر بستگی دارد:

ساختمان ترکیب:

هر قدر ساختمان ترکیب متقارن تر باشد نقطه ذوب آن بیشتر خواهد بود.

ناخالصی:

وجود ناخالصی در ترکیب باعث کاهش نقطه ذوب می شود . یک جسم جامد دارای یک شبکه کریستالی (بلوری) است که این شبکه ها دارای اشکال هندسی معینی می باشد , وجود ناخالصی در ساختمان جسم باعث در هم ریختن شبکه مولکولی و سست شدن آن می گردد. اگر در هنگام حرارت دادن یک ترکیب محدوده دمایی ذوب یعنی دمایی که جسم شروع به ذوب شدن می کند تا دمایی که بطور کامل ذوب می شود کم باشد (مثلا ۸۰ تا ۸۱ درجه سانتی گراد) می توان نتیجه گرفت که جسم ناخالصی نداشته یا ناخالصی آن بسیار کم است اما اگر محدوده ذوب وسیع باشد (مثلا ۸۰ تا ۹۰ درجه سانتی گراد) ناخالصی ترکیب زیاد بوده و نمی توان دمای ذوب دقیقی برای آن مشخص نمود. در این حالت باید ابتدا جسم را خالص نمود و سپس نقطه ذوب آن را تعیین کرد.تغییر فشار باعث تغییر قابل ملاحظه ای در نقطه ذوب نمی گردد زیرا تغییر حالت از جامد به مایع با تغییر حجم قابل ملاحظه ای همراه نیست.

برای تعیین نقطه ذوب بایستی نکات زیر را در نظر بگیریم:

۱_ ابتدا از این که ماده مورد نظر خالص است اطمینان حاصل کنیم.

۲_ اگر ماده از طریق سنتز به دست آمده است باید آن را کاملا خشک کنیم.

ب) رفتار نقطه ذوب

نقطه ذوب یا دامنه ذوب به دو صورت مشخص کننده درجه خلوص یک جسم است.اول این که یک جسم هر قدر خالص تر باشد نقطه ذوب آن بالاتر است.دوم این که هر قدر جسم خالص تر باشد دامنه ذوب آن کوتاهتر است.افزودن مقدار قابل توجهی از یک ناخالصی به یک ماده خالص معمولا سبب کاهش نقطه ذوب بر حسب میزان ناخالصی می شود. دلیلش این است که نقطه انجماد یک ماده وقتی که یک جسم خارجی به آن اضافه شود پایین می آید.نقطه انجماد همان نقطه ذوب ( جامد به مایع ) است با این تفاوت که عمل در جهت عکس انجام می شود (مایع به جامد) .

در مخلوط هایی که شامل مقادیر کم از ناخالصی هستند( کمتر از ۱۵ درصد ) هستند دامنه نقطه ذوب اغلب نشانه میز ان خلوص است.ماده ای که ذوب آن در دامنه کوچکی انجام می شود به طور عادی باید خالص باشد ولی مخلوط ها اغلب در نقطه مینیمم نقطه ذوب – ترکیب درصد,تشکیل اوتکتیک یا دون گداز می دهند که آن هم به طور نا گهانی ذوب می شود. از آنجا که همه مخلوط های دوتایی تشکیل دون گداز نمی دهند در این مورد فرض می شود که هر مخلوط دوتایی رفتاری مشابه آنچه در بالا گفته شد دارد. باید دقت کرد بعضی ترکیبات بیش از یک دون گداز تشکیل می دهند . علیرغم این حالت های مختلف نقطه ذوب و دامنه آن هر دو شاخص مفیدی برای خلوص اند و تقریبا به راحتی تعیین می شوند.

شرح آزمایش

ابتدا یک جسم را در هاون ریخته و آن را کاملا ساییده و به صورت پودر نرم در می آوریم.سپس یک لوله مویینه برمی داریم و یک سر آن ( معمولا سر قرمز رنگ ) را داخل شعله به طور یکنواخت حرارت می دهیم تا بسته شود.

نکته: هنگام بستن سر لوله مویینه آنرا به طور مرتب در شعله چرخانده تا در حرارت خم نشود.

هنگامی که از بستن سر لوله مویینه مطمئن شدیم آن را به طور عمودی چندین بار وارد نمونه جامد کرده تا حدود ۴ تا ۵ میلی متر از سر لوله پر شود.

نمونه مورد نظر را بایستی به ته لوله مویینه منتقل کنیم که برای این کار از لوله بلندی که دو طرف آن باز است استفاده می کنیم. لوله مویینه را از بالای لوله که روی زمین قرار گرفته چندین بار به طرف پایین رها می کنیم تا نمونه به  ته لوله مویینه انتقال یابد.

لوله مویینه را توسط چسب یا کش یا نخ به یک دماسنج متصل می کنیم به طوری که مخزن دما سنج و نمونه در مجاورت هم قرار گیرند.

به نمونه باید حرارت یکنواخت غیر مستقیم داده شود تا به تدریج ذوب گردد. برای این کار از یک حمام ( یک بشر یا لوله تیل ) استفاده می شود که از منبع حرارتی مستقیم و یک ظرف حاوی مایع که نقش رساندن حرارت غیر مستقیم را دارد استفاده می شود اگر حلال یا مایعی که در بشر ریخته می شود آب باشد به آن حمام آب گفته می شود که تا دمای ۱۰۰ درجه سانتی گراد می توان از آن استفاده کرد . اگر دمای ذوب جسم از ۱۰۰ درجه سانتی گراد بیشتر باشد دیگر نمی توان از آب استفاده کرد و به جای آن از پارافین یا روغن سیلیکون استفاده می شود که به آن حمام پارافین ( روغن ) گفته می شود. بایستی دقت کرد که هنگام استفاده از حمام روغن به هیچ عنوان آب داخل حمام راه نیابد چون در این صورت مایع داخل حمام در مواقع حرارت دادن به بیرون پاشیده می شود.

وقتی این مجموعه آماده شد آن را توسط یک گیره در داخل مایع حمام قرار می دهیم به طوری که به ته ظرف و کناره های آن تماس پیدا نکند و سر لوله مویینه خارج از مایع باشد.سپس شعله را روشن نموده و دما را به تدریج بالا می بریم وقتی نمونه شروع به ذوب شدن کرد دما را یاد داشت نموده و نیز وقتی تمامی نمونه ذوب شد دما را یادداشت می کنیم.

بهتر است دو لوله مویینه از نمونه جامد تهیه کنیم و با نمونه اول نقطه ذوب تقریبی را بدست آورده و سپس با نمونه دوم نقطه دوم را بدست آوریم.

 


نوشته شده در تاريخ دو شنبه 27 آذر 1391برچسب:, توسط aryan

 

تبلور مجدد

تبلور مجدد یکی از بهترین روش های خالص سازی برای خالص کردن یک جامد است.در این روش اختلاف در حلالیت سبب جدا شدن اجسام از یک دیگر و یا سبب جدا شدن ناخالصی از یک جسم میشود.در تبلور مجدد مولکول ها به تدریج از محلول جدا شده و در ردیف های منظمی به یکدیگر متصل می گردند که به عنوان شبکه شناخته می شوند. در این روش ساختمان بلورین جسم جامد را با انحلال در حلال مناسب بطور کامل از بین می برند و سپس اجازه می دهند تا بلورهای جسم به صورت یک شبکه بلوری مجددا تشکیل شوند.نا خالصی ها معمولا در محلول باقی می مانند.

تبلور مجدد شامل چندین مرحله می باشد:

۱)انتخاب حلال مناسب

۲)انحلال جسم مورد تخلیص در نقطه جوش یا نزدیک آن

۳)صاف کردن محلول داغ برای جدا نمودن ناخالصی های نامحلول

۴)تبلور از محلولی که در حال سرد شدن است

۵)جدا کردن بلورها از محلولی که در آن شناور هستند

۶)شستشوی بلورها برای خارج کردن محلولی که به آنها آغشته است

۷)خشک کردن بلورها

حلال مورد نیاز برای تبلور مجدد باید دارای چندین خصوصیت باشد:

۱)مهمترین ویژگی حلال این است که جسم جامد مورد نظر را در دمای آزمایشگاه در خود حل نکند و در نقطه جوش در خود حل کند

۲)در دمای بالا ناخالصی را در خود حل نکند ا در دمای پایین در خود حل کند

۳)نقطه جوش خیلی پایینی نداشته باشد

۴)بهتر است نقطه جوش حلال کمتر از نقطه ذوب جسم باشد

۵)حلال یا جسم مورد نظر واکنش شیمیایی ندهد

۶)حلال از درجه سمی بودن پایینی برخوردار بوده و از لحاظ اقتصادی مقرون به صرفه باشد.مثلا از آب,الکل و کلروفرم که همگی شرایط لازم برای تبلور را دارند استفاده کنند

اگر نیاز به انتخاب حلال مناسب برای تبلور مجدد داریم به روش زیر عمل می کنیم:

ابتدا چند لوله آزمایش را بر می داریم و مقداری (حدود چند بلور شکر ) از جسم جامد را درون آن می ریزیم.سپس یک میلی لیتر از حلال هایی را که در اختیار داریم در هر کدام از لوله ها می ریزیم و آنها را شدیدا تکان می دهیم آنگاه می بینیم که آیا جسم در حلال حل شده است یا خیر؟ در مرحله بعد لوله ها را تا رسیدن به نقطه جوش حرارت می دهیم و باز نگاه می کنیم که آیا جسم در حلال حل شده است یا خیر؟ و نتایج را ثبت می کنیم.ما دنبال حلالی می گردیم که در دمای آزمایشگاه جسم را در خود حل نکند و در دمای جوش بتواند جسم را در خود حل کند.معمولا از آب به عنوان یک حلال مناسب استفاده می کنند.در صورتی که آب به عنوان حلال مناسب برای تبلور مجدد باشد می توان عمل انحلال را در یک بشر و در فضای باز انجام داد در غیر این صورت برای اجتناب از استنشاق گازهای سمی عمل انحلال باید در یک بالن و یا با استفاده از یک مبرد و به صورت رفلاکس انجام گیرد.

شرح آزمایش:

یک بشر برداشته و حدود یک گرم استانیلید ناخالص را درون آن می ریزیم و به آن حدود ۲۰ میلی لیتر آب اضافه میکنیم و حرارت ککیدهیم تا به جوش آید.در صورتی که جسم به صورت کامل حل نشد هر بار به آن ۱۰ میلی لیتر آب اضافه نموده ومجددا حرارت می دهیم تا به جوش آید.مدت زمان جوشیدن نبایستی طولانی شود چون حلال اضافه شده تبخیر می گردد.افزایش حلال را تا زمانی که تمام جسم در دمای جوش حل شود ادامه می دهیم البته پس از هر بار افزودن حلال اگر اجسامی که به نظر می آید ناخالص باشند (موادی پرز مانند ) در دمای جوش حل نشدند حدود ۱۰ میلی لیتر حلال اضافه تر می ریزیم و آن را به صورت داغ روی یک کاغذ صافی معمولی صاف می کنیم در این مرحله نبایستی صاف کردن با استفاده از مکش انجام گیرد چون جریان هوا باعث سرد شدن حلال گردیده و کریستالها نا به هنگام تشکیل میگردند.افزایش حلال اضافه به منظور جلوگیری از تبلور نا به هنگام در این مرحله می باشد.بهتر است در این مرحله در حین صاف کردن بشر را مرتبا به طور ملایم حرارت دهیم . افزایش حلال خیلی بیش از مقدار مورد نیاز ممکن است که مانع تشکیل رسوب گردد.

محلول (صاف شده ) را در کناری قرار داده تا به مرور زمان سرد شده و بلور های جسم تشکیل گردند.هنگام سرد شدن محلول نبایستی آن را به هم زد چون باعث می شود که بلورهای ریزی به دست آید .پس از تشکیل کامل بلورها این مجموعه را روی کاغذ صافی معمولی یا روی قیف بوخنر صاف کرده تا جسم بر روی کاغذ صافی باقی بماند.ناخالصی هایی که در دمای بالا نا محلول هستند را با صاف کردن محلول های داغ و ناخالصی هایی که در دمای پایین محلول هستند را از طریق صاف کردن محلول سرد جداسازی می نماییم.

پس از صاف کردن بلورها معمولا می توان مقدار دیگری بلور به دست آورد . برای این کار میتوان محلول زیر صافی را در حمام آب یخ قرار داد یا ابتدا کمی آن را حرارت داده تا مقداری از حلال آن خارج شده و تغلیظ شود و سپس اجازه دهیم تا متبلور شود . بلورهایی که در این مرحله به دست می آید به اندازه مرحله اول خالص نیستند.

به منظور شستن بلورها می توان مقداری از حلال سرد ( در اینجا آب ) را روی کریستالهای جسم ریخته و اجازه داد تا حلال شستشو از بلورها خارج شود.

در صورت استفاده از خرطوم آبی می توان برای خشک کردن سریع تر بلورها چند دقیقه هوا را از درون بلورهای موجود در قیف عبور داد و سپس آنها را روی شیشه ساعت قرار داده و برای چند ساعت در هوا قرار داد. در صورت لزوم می توان از آون برای خشک کردن بلورها استفاده نمود و یا با گذاشتن این بلورها در دسیکاتور خلا سرعت خشک کردن آنها را تسریع نمود

 


.: Weblog Themes By Pichak :.


----------------- --------------------------

صفحه قبل 1 2 3 4 5 صفحه بعد

  • اس ام اس عاشقانه
  • گوگل رنک